Structural Analysis of Hemoprotein Binding Sites

Patrick Finnerty Biosciences Universtat Autònoma de Barcelona

Academic Tutor – Prof. Jean-Didier Maréchal, Dept. of Chemistry Thesis submitted for the degree of

Master of Science

Fall 2021

Acknowledgements

In case anyone reads this in the future, some context may be appreciated: I attended and (hopefully) completed this Master's program during the COVID-19 global pandemic from September 2020 to September 2021.

Thanks to everyone who taught me something during this program.

Thanks to those in the research group who helped me understand what a heme is and got me this far; they tolerated and attempted to alleviate my ignorance: Laura Tiessler Sala, José Emilio Sánchez Aparicio and JeanDi.

Thanks to the UAB for having me; and thanks to our professors for providing a mercilessly thorough education.

Thanks to Spain, and Catalonia, for even allowing me into the country, and, I emphasize, thanks for implementing public health measures.

Thanks to my classmates for sharing in the suffering.

Thanks to my family and friends for supporting me, often over the phone, throughout this program and interesting time.

Thanks to whatever media I consumed and the creators of that media that facilitated the survival of my sanity through the pandemic.

Finally, I'd like to quote a well-known artist from California. He was referencing his own work, but I wholly identify with his appreciation for the subject of his esteem:

"Last but not least, I wanna thank me. I wanna thank me for believing in me. I wanna thank me for doing all this hard work. I wanna thank me for having no days off. I wanna thank me for, for never quitting. I wanna thank me for always being a giver, and trying to give more than I receive. I wanna thank me for trying to do more right than wrong. I wanna thank me for just being me at all times." – Calvin Cordozar Broadus Jr.

Abstract

Hemoproteins are able to catalyze an extraordinarily broad range of reactions. This class of proteins includes cytochrome P450s and peroxidases, among many others. Hemoproteins by definition include heme to achieve their chemistry; but heme molecules themselves vary considerably, and different heme molecules are employed depending on the function of a particular hemoprotein. At present, there is a knowledge gap in the literature of the structural features required to bind heme in hemoprotein binding sites.

In this study, we investigated the binding environments of heme-b, heme-c, siroheme, and verdoheme. A high-throughput framework was developed to generate, process, and analyze data derived from the Protein Data Bank (PDB) files used in the study. Amino acid frequencies, volume, surface areas, and angular relations within the heme binding sites were all obtained and examined for a diverse set of hemoproteins. Overall, we find that nonpolar residues and their interactions with heme may be of greater importance to heme binding than previously thought, suggesting that polar interactions, while necessary, are insufficient to efficiently bind heme. We also report several values for binding pocket volumes, surface areas, and angular data that may be of utility in artificial metalloenzyme design. The framework developed for this study is highly adaptable and may facilitate similar investigations for other proteins and ligands.

Contents

Li	st of	Figures	vi
Li	st of	Tables	viii
La	y Su	mmary	1
In	trodu	iction	2
	0.1	Types of Heme	4
1	Met	hods	10
	1.1	Datasets	10
	1.2	Pre-processing	11
	1.3	Processing Monomers	11
	1.4	Import to R	16
2	Res	ults and Discussion	17
	2.1	Analysis of Residues Nearby Each Heme Molecule	17
	2.2	Volume of Heme Binding Pockets	37
	2.3	Surface Areas of Heme Molecules and Their Binding Pockets	41
	2.4	Ligand Solvent Accessible Surface Area	42
	2.5	Pocket Solvent Accessible Surface Area	46
	2.6	Angular Data	50
	2.7	Limitations of the Study	50
3	Con	clusion	52
A	open	dices	

A	Figures	55
	A.1 AA Frequency	55
	A.2 Ligand Excluded Surface Area	59

Contents

A.3	Pocket Excluded Surface Area	63
A.4	All Planar Angles	67
A.5	All CA-CB-Fe Angles	71
B Tab	les	75
B.1	Molecule Names and Source Organisms	75
B.2	Amino Acid Frequencies at 5A Distance Cutoff	81
B.3	Distances	83
B.4	Volume and Surface Areas	195
B.5	All Planar Angles	202
B.6	All CA-CB-Fe Angles	226
Works	Cited	248

List of Figures

1	Heme-b (HEM)	4
2	Heme-c (HEC)	5
3	Siroheme (SRM)	6
4	Verdoheme (VEA)	7
5	Verdoheme (VER)	7
1.1	Good Example of Surfnet Run (1B2V)	13
1.2	Non-Ideal Example of Surfnet Run (1DKH)	14
1.3	Example of Planar Angles Calculation (1B5M)	16
2.1	HEM: AA Frequency within 7A	18
2.2	HEM: AA Frequency of Monomer	22
2.3	HEM: Residue Distribution by Distance	23
2.4	HEC: AA Frequency within 7A	24
2.5	HEC: AA Frequency of Monomer	26
2.6	HEC: Residue Distribution by Distance	27
2.7	VERDOHEME: AA Frequency within 7A	28
2.8	VERDOHEME: AA Frequency of Monomer	30
2.9	VERDOHEME: Residue Distribution by Distance	31
2.10	SRM: AA Frequency within 7A	32
2.11	SRM: AA Frequency of Monomer	36
2.12	SRM: Residue Distribution by Distance	37
2.13	HEM: Volume of Binding Pocket	38
2.14	HEC: Volume of Binding Pocket	39
2.15	SRM: Volume of Binding Pocket	40
2.16	VERDOHEME: Volume of Binding Pocket	41
2.17	HEM: Ligand Accessible Surface Area	42
2.18	HEC: Ligand Accessible Surface Area	43
2.19	SRM: Ligand Accessible Surface Area	44
2.20	VERDOHEME: Ligand Accessible Surface Area	45

2.21	HEM: Pocket Accessible Surface Area	46
2.22	HEC: Pocket Accessible Surface Area	47
2.23	SRM: Pocket Accessible Surface Area	48
2.24	VERDOHEME: Pocket Accessible Surface Area	49
A.1	HEM: AA Frequency	55
A.2	HEC: AA Frequency	56
A.3	SRM: AA Frequency	57
A.4	VERDOHEME: AA Frequency	58
A.5	HEM: Ligand Excluded Suface Area	59
A.6	HEC: Ligand Excluded Suface Area	60
A.7	SRM: Ligand Excluded Suface Area	61
A.8	VERDOHEME: Ligand Excluded Suface Area	62
A.9	HEM: Pocket Excluded Surface Area	63
A.10	HEC: Pocket Excluded Surface Area	64
A.11	SRM: Pocket Excluded Surface Area	65
A.12	VERDOHEME: Pocket Excluded Surface Area	66
A.13	HEM: All Planar Angles	67
A.14	HEC: All Planar Angles	68
A.15	SRM: All Planar Angles	69
A.16	VERDOHEME: All Planar Angles	70
A.17	HEM: All CA-CB-Fe Angles	71
A.18	HEC: All CA-CB-Fe Angles	72
A.19	SRM: All CA-CB-Fe Angles	73
A.20	VERDOHEME: All CA-CB-Fe Angles	74

List of Tables

2.1	HEM: AA Frequency Table within 7A	18
2.2	HEC: AA Frequency Table within 7A	25
2.3	VERDOHEME: AA Frequency Table within 7A	28
2.4	SRM: AA Frequency Table within 7A	32
B.1	HEM: Molecules and Source Organisms	75
B.2	HEC: Molecules and Source Organisms	79
B.3	SRM: Molecules and Source Organisms	30
B.4	VERDOHEME: Molecules and Source Organisms	30
B.5	HEM AA Freq, Cutoff 5A	31
B.6	HEC AA Freq	31
B.7	VERDOHEME AA Freq	32
B.8	SRM AA Freq	32
B.9	HEM: All Distances, Atoms to Fe	33
B.10	HEC: All Distances, Atoms to Fe	43
B.11	SRM: All Distances, Atoms to Fe	60
B.12	VERDOHEME: All Distances, Atoms to Fe	67
B.13	HEM: Mean Distances of Each Residue in Pocket	71
B.14	HEC: Mean Distances of Each Residue in Pocket 18	37
B.15	SRM: Mean Distances of Each Residue in Pocket	91
B.16	VERDOHEME: Mean Distances of Each Residue in Pocket 19	94
B.17	HEM: Volume and Surface Areas, Cutoff 7A	95
B.18	HEC: Volume and Surface Areas, Cutoff 7A 19	97
B.19	SRM: Volume and Surface Areas, Cutoff 7A	98
B.20	VERDOHEME: Volume and Surface Areas, Cutoff 7A 19	99
B.21	HEM: Volume and Surface Areas, Cutoff 5A	99
B.22	HEC: Volume and Surface Areas, Cutoff 5A)1
B.23	SRM: Volume and Surface Areas, Cutoff 5A)2
B.24	VERDOHEME: Volume and Surface Areas, Cutoff 5A 20)2

B.25 HEM: All Planar Angles	03
B.26 HEC: All Planar Angles	18
B.27 SRM: All Planar Angles	22
B.28 VERDOHEME: All Planar Angles	25
B.29 HEM: All CA-CB-Fe Angles	26
B.30 HEC: All CA-CB-Fe Angles	40
B.31 SRM: All CA-CB-Fe Angles	44
B.32 VERDOHEME: All CA-CB-Fe Angles	47

Lay Summary

We investigated how heme, a molecule involved in many biological processes, binds to proteins. The study was conducted computationally. 3D structures of proteins were downloaded from a database, and run through software specialized for viewing molecules. This software was used to examine the region on the protein where heme binds (binding pocket). The software also predicted the volume and surface areas of the binding pocket. The data produced were analyzed using statistical software.

We found that a greater proportion of the binding pocket associates with the hydrophobic and uncharged parts of the heme molecules more frequently, and therefore likely more strongly, than previously thought. These results suggest that these hydrophobic, electrically inert parts of the pockets may be very important to consider when studying, or designing proteins containing heme. We also report the volume and surface area data that were predicted, which support the above conclusion and may also be of help when studying or designing these proteins.

Proteins that contain metal ion cofactor(s) are known as metalloproteins, and they compose approximately 40% of all proteins. The metal ion can be free, or complexed with another molecule. One such molecule is heme, a complex of iron and a porphyrin ring. Heme is employed by many metalloproteins to catalyze a broad range of reactions[1].

There are many types of heme; but all of them are a coordination complex composed of an iron atom coordinated and bound to a modified porphyrin ring. Porphyins are composed of four pyrrole subunits (pentagonal structures of four carbons and a nitrogen) that are bound together via methine (i.e. carbon) bridges. Porphyrins are considered macrocycles, molecules with large ring structures. The ring within porphyrins is heterocyclic, and considered aromatic, and therefore acts as a large resonant structure capable of transferring electrons. Coupled with an iron atom to enable reduction-oxidation reactions and the macrocycle of the porphyrin ring, the overall heme complex is therefore highly suited for reactions involving electron transfer[2].

Proteins containing heme are known as hemoproteins - hemoglobin and myoglobin are well-known examples, using heme to store and transport oxygen. Other examples of hemoproteins are peroxidases, catalases (a type of peroxidase), nitric oxide synthases, heme oxygenases, and cytochrome p450s. Peroxidases and catalases catalyze oxidation-reduction reactions using a histidine-bound heme, with catalases in particular specializing in the decomposition of hydrogen peroxide. Nitric oxide synthases catalyze the reaction of L-arginine into nitric oxide, which is vitally important to cellular signaling [1]. Free heme molecules may be released upon degradation of hemoproteins (especially hemoglobin), however, heme is prooxidative

and therefore toxic to cells and must be cleared. Heme oxygenases assist in the degradation of heme, and are regarded as potential therapeutics, due to antiinflammatory effects[3].

The enzymes with arguably the most potential applications, cytochrome P450s function as powerful monooxygenases. They participate in many reactions: capable oxidizing a wide range of substrates, including carbohydrates, steroids, fatty acids; catalyzing hormone degradation and synthesis; and degrading the majority of drugs[1]. Due to their extraordinary utility and range of reactions, cytochrome p450s are of great interest in the protein engineering field. Cytochrome P450s have the potential to be used in industrial biocatalysis, e.g. in pharmaceutical production, bioremediation of environmental pollutants[4, 5]. The limiting factor preventing its deployment has been the struggle to increase enzymatic efficiency and therefore yield of processes employing the enzyme[6, 7].

Thus far, only heme-b and its respective hemoproteins have been discussed (although heme-b is the most abundant and most employed type of heme). Other types of heme are structurally and chemically different, and are used to achieve different chemical reactions. In this study, we examined heme-b, heme-c, verdoheme, and siroheme. Their structures are shown in Figures 1-5, and each heme is individually discussed below.

0.1 Types of Heme

0.1.1 Heme-b

Figure 1: Heme-b (HEM)

The most common heme is heme-b. It is employed by the vast majority of hemoproteins. It is composed of an iron and porphyrin ring complex with attached vinyl and ethyl groups, and with the addition of two propionate groups. The iron atom is usually coordinated to a histidine or cysteine, depending on the enzyme[1, 2].

The two propionate groups stabilize the heme in the pocket by forming polar interactions with salt bridges formed by arginine residues in the binding environment[8]. This behavior is the same for heme-b and likely verdoheme. It has also been suggested that the propionate groups may also serve to exclude solvent from the binding environment, potentially acting to expel and repel water molecules [9].

0.1.2 Heme-c

Figure 2: Heme-c (HEC)

Heme-c is derived from heme-b. It is fairly similar to heme, with two notable differences: the iron atom binds, with few exceptions, covalently to cysteine residues in the binding pocket; and its two vinyl groups form thioether bonds with amino acids in the protein binding pocket. Its function is much more specific than heme-b, mostly serving as an electron carrier rather than catalyzing a plethora of reactions. The reason for this is not abundantly clear, but several studies suggest that because of its covalent bonding, heme-c has an electronic potential that is can be far lower and in general more broad, and more specifiable, than heme-b. [2, 10]

0.1.3 Siroheme

Figure 3: Siroheme (SRM)

Siroheme is even more limited in its applications, but highly specialized for its role. It is still an iron atom-porphyrin coordination complex, but it contains far more carboxyl and propionate groups than the other types of heme, making it highly polar. It is used exclusively in sulfite and nitrite reductases, which catalyze the reduction of the sulfates and nitrates plants uptake from the ground, providing the sources of nitrogen and sulfur used to produce nitrogen and sulfur-containing amino acids[11]. The reason for the use of siroheme in this reaction rather than heme-b is not completely understood. But one study suggests that the bridge that siroheme forms between its catalyic iron atom, and the protein matrix environment (which also necessarily involves another cofactor, a cluster of cubane for electron transfer and provision) is more efficient at channeling electrons than the bridge that could be formed by heme.[12]

0.1.4 Verdoheme

Figure 4: Verdoheme (VEA)

Figure 5: Verdoheme (VER)

Lastly, verdoheme is an intermediate product in the degradation of heme-b by heme oxygenase. When heme oxygenase degrades heme-b, biliverdin, carbon monoxide, and iron are produced; verdoheme is the precusor to bilverdin[13, 14]. While a product of prior reactions within heme oxygenase, verdoheme appears to be oriented and bound differently [15]. The two structures used in the study, VEA and

VER, are verdoheme at different stages of degradation, either partially oxidized or containing one less propionate group.

In summary, heme molecules can have very different structures and functions; they enable and catalyze an extraordinary amount, and extraordinarily diverse set of chemical reactions. They are important, not only as a study of how one class of molecule can be involved in a broad swath of reactions, but because hemoproteins have the potential to be of great value in biocatalysis, bioremediation, and pharmaceutical applications.

There is a significant barrier to the employment of hemoproteins in these areas, however: improving their efficiency far beyond what is found in nature. This is the field of artifical metalloproteins, or metalloenzymes: engineering metalloenzymes to improve them; increasing efficiency, stability, or even to introduce new reactions to heme's repetoire.

There are multiple methods employed to design these molecules, but rational design in particular (basically, the mutation of certain residues based on an understanding of the structure-function relationships) is at least partially hampered by an incomplete understanding of the binding environment for heme. For example, the importance of the binding environment was noted in a study seeking to design *de novo* heme-c based enzymes, and found the binding environment likely to be of importance in modulating redox potential [16].

A fairly recent study conducted a structural analysis of 125 hemoprotein chains[17]. The study suggested hemoproteins undergo small conformational changes during binding; and that apo-form (ligand-containing) proteins may therefore be suitable for bioinformatics-based prediction and protein design. Additionally, the heme binding environments for both heme-b and heme-c were analyzed, and relative frequencies per amino acid were reported. Cysteine, histidine, phenylalanine, methionine, and tyrosine were found to be the most abundant residues within the binding environments of both heme-b and heme-c.

The aforementioned study was published in 2011 – since then the PDB has been populated with far more hemoproteins. The focus of the study was on conformational

Methods

differences induced by heme-binding, rather than the binding environment, although the relative frequencies of amino acids were reported. Interactions of the more abundant residues with heme-b or heme-c, including interactions with the porphyrin ring, were briefly discussed and this discussion will not be reproduced here.

In this study, we present research focused on elucidating the binding environment of multiple heme molecules: heme-b (HEM), heme-c (HEC), siroheme (SER), and verdoheme (VEA/VER). A diverse set of PDBs was assembled. UCSF Chimera was used to both extract and predict properties of a diverse set of hemoproteins. R was used to analyze the results. A robust and high-throughput framework was constructed to process the datasets for each heme molecule, requiring only inputs of which ligand was to be examined per dataset.

The properties extracted and predicted of the heme molecules' binding environments were: the amino acid frequencies; the distances of the amino acids from the heme iron; the volume of the binding pocket; and the surface areas of both the hemes and the binding pocket. These data can be expected to be of use, or at least of interest, to efforts in artifical metalloenzyme design.

Additionally, angular data for the residues within the binding environment were obtained. These data were produced more for exploratory purposes and are not discussed extensively in this study. Specifically, planar angles and the angle between residues' alpha-carbon, beta-carbon, and heme iron (CA-CB-Fe) were obtained.

These results may be of use in rational design of hemoproteins in future studies, or at least, improve the understanding of the heme binding environment.

Methods

All scripts (as well as raw data, results, and this document) are available on GitHub[18].

1.1 Datasets

A list of PDBs was assembled that represented either a representative sample of a variety of proteins, with a resolution better than 3A, (HEM and HEC) or, all proteins containing these ligands were downloaded from the PDB (in the case of SRM, VER, VEA). Not all downloaded PDBs were appropriate for this study (e.g. contained superimposed structures) and therefore the amount of PDBs was culled. The datasets are current as of 16 August 2021.

The size of the datasets actually used in the study were as follows: HEM (n=58), HEC(n=13), SRM (n=9), VER (n=2) and VEA (n=2), which are merged for a combined n=4 for VERDOHEME.

The name of all proteins used in the study and their source organism are provided tables within Appendix B.1.

1.2 Pre-processing

Many of the PDBs downloaded were multimeric structures. The number of subunits per protein would skew results and overrepresent especially large multimeric proteins. Therefore, to only allow for one heme binding site per PDB, all downloaded PDBs were converted to monomeric structures. This was achieved by saving a single chain (chain A) of each PDB and eliminating all other chains. The single chain was then saved as a PDB and used in all subsequent scripts. Part of the script is reproduced below:

```
from chimera import runCommand as rc
# select chain A, a single unit
rc("sel :.a")
# select everything else
rc("sel invert sel")
# delete everything else besides that chain A
rc("del sel")
# now save the monomer:
rc(("write format pdb 0 "+unexpandedResultPath+activeLigand+"/%s")%
  (fn + ".mono.pdb"))
```

1.3 Processing Monomers

UCSF-Chimera was used to generate all data in this study. Multiple Python scripts were employed to achieve a high-throughput process where all monomeric PDBs could be processed in the same session.

Chimera was used to predict the following qualities: Volume of the ligand binding pocket, accessible and excluded surface area of the ligand, and accessible and excluded surface area of the binding pocket. These calculations require a population of atoms to be selected for the calculation.

1. Methods

Atoms were selected within a distance cutoff, to be considered as potentially interacting with the ligand or forming the binding pocket. Distance cutoffs from the ligand of 5A and 7A were chosen; for the predicted qualities, the algorithms were run twice to get values at 5A and 7A. For the distance and angle calculations, only the 7A distance cutoff was used, as the cutoff does not factor into any calculations and may be set during analysis.

As these cutoffs are selected arbitrarily, data from the 5A and 7A runs are overlaid in the figures reported in Appendix A. Data tables are also provided in Appendix B.

1.3.1 Amino Acid Frequency

Amino acids within the bounds of the lower and upper distance cutoff were selected and recorded. These were then counted for frequency per residue.

1.3.2 Volume Calculations

Volume of the binding pocket was predicted via Surfnet [19], and run with default parameters of Grid Interval = 1.0 and Distance Cutoff = 10.0 (the latter option does not relate to the distance cutoff from the ligand). Surfnet is the molecular volume calculation tool implemented within UCSF Chimera. The script used selects the residues around heme to consider as the bounds of the pocket, but effectively ignores heme's presence as its calculates the volume, as if the pocket were empty:

```
from chimera import runCommand as rc
# Select the atoms within 7A of heme.
#Then, of that selection, keep everything but heme.
rc("sel :"+activeLigand+" za < "+angstromDistance)
# this is the syntax that accomplishes our desired selection
rc("sel sel &~:"+activeLigand)
interface_surfnet("sel","sel")
rc("sop split #") # acquire the individual pockets that have been generated</pre>
```

1. Methods

rc("measure volume #") # measures volume of individual pockets
in R we keep only the largest volume

Surfnet, at least in this investigation, was prone to generating very small volumes. During analysis these were removed and only the largest volume generated is recorded, since the largest volume generated and identified is most likely the binding pocket. Two figures below demonstrate a run where one good pocket is produced, and one where a few very small "bubbles" are generated:

Figure 1.1: Good Example of Surfnet Run (1B2V)

1. Methods

Figure 1.2: Non-Ideal Example of Surfnet Run (1DKH)

1.3.3 Surface Area Calculations

Solvent excluded and solvent accessible surface areas of both the ligand and the binding pocket were calculated using Chimera's "surf" algorithm, which itself is an implementation of a program called MSMS [20].

These two measures are similar but not the same. Solvent accessible surface area represents the surface area of the protein that a solvent molecule (i.e. water) may interact with. It is calculated by rolling a sphere on the Van der Waals surface of the protein, and the *center of the sphere* is recorded as the bounds of the accessible surface area. Solvent excluded surface area is calculated the same way, rolling a sphere on the Van der Waals surface of the protein, but instead the *point of contact of the sphere against the Van der Waals surface* is recorded as the excluded surface area. The solvent excluded surface area may therefore be considered the bounds of the protein itself, versus the solvent accessible surface area, which can be considered the bounds at which a solvent may interact with the protein[20].

1.3.4 Distance Calculations

Distances of amino acids from the ligand could not be calculated accurately nor precisely in a direct way. Instead, distances for each atom composing a residue were calculated. This was achieved using a built-in function of chimera; the syntax is not straightforward, but part of the script is shown below. The distances of all atoms within a residue were averaged, and this value was taken as the mean distance of the entire residue and used in subsequent steps.

```
from chimera import runCommand as rc
#select and define the Fe atom
rc("sel :HEM@Fe")
# index to acquire the one atom selected
fe = chimera.selection.currentAtoms()[0]
# select all atoms within angstromDistance of Fe (also de-selects Fe)
rc("sel sel za < "+settings.angstromDistance)
# define this selection of atoms within distance as a list
nearbyAtoms = chimera.selection.currentAtoms()
# parse and print the distances (and coordinates) of these atoms
for i in nearbyAtoms:
    print "Atom being analyzed...", i, "... Distance to Fe...",
    #prints distance between atom i and the Fe atom
    i.coord().distance(fe.coord())</pre>
```

The data produced in this step therefore include the mean distance of each amino acid. Distances are traceable per residue and atoms in each residue; this data was used to construct the distributions of amino acids over distance, and the angular data below are cross-referenced with this list of distances.

1.3.5 Planar Angle Calculations

Individual residues and the ligand were defined as axes. The angle between each residue's axis and the axis of the ligand were calculated. Each axis functions

Discussion

essentially as a separate plane. This employed the "define axis", and "angle" functions of Chimera; the Axes/Planes/Centroids Structural Analysis function of Chimera via GUI.

Figure 1.3: Example of Planar Angles Calculation (1B5M)

1.3.6 CA-CB-Fe Calculations

Residues within the distance cutoff were examined one by one. The angle of between each residue's carbon alpha (CA) and carbon beta (CB) and the Fe of the ligand was calculated, using the "angle" function of Chimera. The ligand nor the Fe atom were compared with themselves.

1.4 Import to R

The data produced by Chimera and the Python scripts were stored as .txt files. These files were imported to R and processed from .txt files into organized data formats. All plots and tables were constructed using R and imported directly to this document using Rmarkdown.

2.1 Analysis of Residues Nearby Each Heme Molecule

We began the study by acquiring data to elucidate and quantify the propensity of amino acids to interact with heme (HEM, HEC, SRM, VEA/VER) in its binding environment. This study focused on potential interactions with the entire heme molecule, including the porphyrin ring and attached groups; therefore, any amino acids with potential interactons with the heme iron, porphyrin ring, or groups on the porphyrin ring (e.g. vinyl, propionate groups), were included in the data gathered for this section. A potentially interacting amino acid was therefore defined as any amino acid with at least one atom within the distance cutoffs (5 and 7 Angstroms (A)) from the heme *molecule*.

Amino acid frequencies were obtained for residues within the distance cutoffs of 5A and 7A - these data are overlaid in several figures in Appendix A.1. The trends in these data are very similar and therefore only the data pertaining to the 7A distance cutoff are discussed below.

2.1.1 Heme-b

Amino Acid Frequencies in Binding Pocket

Figure 2.1 plots the frequency of each residue within 7A of heme-b.

HEM: AA Frequency within 7A of HEM

Table 2	2.1:	HEM:	AA	Frequency	Table	within	7A
				1 1/			

Residue	Freq
LEU	261
PHE	224
ALA	188
ILE	161
VAL	158
TYR	156
ARG	146
HIS	142
THR	142
GLY	133
SER	129
GLU	104
ASP	99
LYS	95
PRO	84
ASN	78

Residue	Freq
GLN	78
MET	72
TRP	60
CYS	17

 Table 2.1: HEM: AA Frequency Table within 7A (continued)

Beginning at the left of Figure 2.1 and moving right, large, nonpolar amino acids appear most frequently within 7A: LEU and PHE; ILE appears less frequently than these two amino acids but nonetheless is in high frequency. Small, nonpolar amino acids ALA and VAL also appear very frequently. As the majority of the heme-b molecule is made up of the nonpolar porphyrin ring, these amino acids are therefore likely in such high frequency to provide the nonpolar interactions with the pyrole groups and methyl and vinyl groups.

Tyrosine, arginine, histidine appear next most frequently. The two propionate groups on heme make polar interactions with salt bridges formed between arginine groups within the binding environment[8]. Therefore, the tyrosine and histidine likely form polar interactions with the portion of the propionate groups not interacting with the arginine salt bridges. This, in addition to the nonpolar interactions above, likely provides as hospitable of a binding environment as possible to coordinate the heme. It should be noted histidine is one of the residues that coordinates the iron atom, and this may therefore increase its frequency in the binding pocket.

Glycine is a small residue and cannot form significant interactions within its environment; however, its frequency, or lack thereof (compared to background frequency, discussed below), suggests the binding pocket may not require as much flexibility or spatial considerations as in the rest of the protein.

Next appear serine, glutamate (glutamic acid) and aspartate (aspartic acid) and lysine. These are polar residues, and glutamate and aspartate are negatively charged; lysine is polar too, but positively charged (at pH 7). The negative charge on glutamate and aspartate may explain why they are fairly infrequent: although polar, the negative charge may induce a repulsion effect with the propionate groups.

Or, it may be that other amino acids are preferable, as is likely the case for lysine. Lysine is polar and positively charged; but arginine residues forms the salt bridges necessary for propionate to make polar interactions. And histidine coordinates the heme iron. Therefore the infrequency of lysine may be less due to a problem with lysine and more due to a preference for other polar amino acids.

Proline is a small nonpolar amino acid in low frequency; the trend for heme-b, at least, appears to be to favor large nonpolar amino acids in the binding pocket. This may suggest that a large amount of nonpolar interactions, per residue, is favored in the binding pocket, perhaps because of the limited space available to position residues to interact with heme.

Asparagine and glutamine are both medium-sized polar amino acids; given the trends already discussed it is surprising these are not in greater abundance. But as with proline, it may simply be a matter of maximizing the benefit of the interactions that may be formed with the heme; while asparagine and glutamine are polar, amino acids like arginine and histidine are both polar and positively charged (and arginine forms salt bridges), capable of stronger interactions with the electronegative propionate groups.

Methionine and tryptophan appear very infrequently in the binding pocket. Tryptophan is very surprising to find as second-to-least frequent. It is a large nonpolar amino acid - but perhaps its single, potential hydrogen bond, although weak, is enough to prefer completely nonpolar residues. Or, with its size, it is preferable to have more numerous, smaller nonpolar residues that can favorably interact with the porphyrin while reducing steric hindrance of other residues in the environment. The reason for methionine's low frequency is not clear, perhaps for similar reasons as with proline, where more intensely nonpolar residues are preferred, rather than less nonpolar residues being unfavorable.

Cystine appears most infrequently of all the amino acids in the binding pocket. This is quite surprising - cystine is the other highly conserved residue that may coordinate the heme iron. Perhaps the sample of PDBs used in this study mostly use histidine to coordinate the iron - but this would only account for one residue in

the binding pocket per pdb. Therefore these results suggest that while cystidine may be well suited to coordinate the iron in heme, it is poorly suited to form any nonpolar interactions with the porphyrin ring, leaving the task up to other, more suitably, intensely nonpolar amino acids.

Moving away from discussing individual amino acid populations, what is especially notable of the data for heme-b is that nonpolar residues appear in much greater frequency than polar residues. Nonpolar interactions with heme are therefore more numerous than polar interactions. Their multiplicity may also suggest that they are potentially of greater importance than previously thought. At the very least, these results suggest that polar interactions and coordination of the iron atom, while necessary for heme binding, are insufficient, and that nonpolar interactions and the population of nonpolar residues in the binding pocket should be considered when examining the binding environment of heme.

Comparison with Background Amino Acid Frequencies

While the frequencies of amino acids in the binding pocket have been discussed, it may also be of interest to compare against the background amino acid frequency, the general frequency of amino acids within the entire monomer. The degree to which any results may affect the significance of the frequencies of the amino acids in the binding pocket is unclear - those amino acids are interacting with the heme. However, an in depth examination of similarities and differences may reveal that some amino acids may simply be extremely highly conserved by chance and by virtue of their numerous population, rather than some chemical benefit.

HEM: AA Frequency of Monomer

Figure 2.2: HEM: AA Frequency of Monomer

Figure 2.2 documents the frequencies of amino acids overall within the monomer.

Leucine and alanine, as in the binding pocket frequencies, are highly frequent in the overall monomer. This may suggest their prevalence in the binding pocket may simply be due to a high population of leucine and alanine in hemoproteins.

However, after these two amino acids the tendencies in frequency for the binding pocket and the monomer at large diverge. Glycine is in high frequency - likely due to more complex geometry e.g. helices outside the binding pocket. In interest of brevity, the remaining frequencies are summed up thus: the same trends that appear to exist in the binding pocket do not appear to exist in the monomer at large. While the order of frequencies in conserved binding pockets can be rationalized, justifying the overall frequencies in monomers invites significant speculation.

Distributon of Amino Acids by Distance

Figure 2.3: HEM: Residue Distribution by Distance

After an exhaustive exploration of the relative frequencies of amino acids in the binding pocket, Figure 2.3 below is fairly straightfoward. It plots the distribution of amino acids in the binding pocket against their distance from the iron of the heme.

We find that only a few residues come in close contact (<4A) of the heme: cysteine, histidine, and tyrosine. Most residues center their distribution at around 6A, although lysine seems more biased than the remaining residues to be a bit closer. Cysteine and histidine may be at least in part explained to be close due to their use as coordinating residues; histidine, being in greater frequency, may also be this close due to favorable interactions with the porphyrin ring.

The proximity of tyrosine however, is more notable. It cannot form coordination bonds with the heme iron, but tyrosine residues do interact with the propionate groups. Tyrosine is also required for redox reactions, and part of the population

of tyrosine residues may therefore be in close proximity to heme to facilitate electron transfer in various enzymes [1]. These results suggest that of all potentially interacting polar/positively charged residues, tyrosine is the most likely at least to be in close proximity to the heme molecule. Whether this illustrates an importance of tyrosine to interact with propionate groups, or instead the need for tyrosine to be in close proximity in order to form such interactions, or simply demonstrates involvement in oxidation/reduction reactions, is beyond the scope of this study.

2.1.2 Heme-c

HEC: AA Frequency within 7A of HEC

Figure 2.4: HEC: AA Frequency within 7A

Leucine and alanine again are highly frequent for HEC, followed by quite similar trends, and therefore HEC will not be as thoroughly discussed as HEM. The most notable differences may be that GLY and CYS are in far higher frequency than in heme. Heme-c almost always forms covalent bonds with cysteine residues, and

this may explain that frequency. But as for the high frequency of glycine, the reason for its abundance is unclear, although it seems it may have an important role in heme-c pockets.

Residue	Freq
LEU	62
ALA	47
GLY	39
LYS	38
PHE	35
VAL	35
ILE	34
THR	34
TYR	30
ARG	26
PRO	26
CYS	24
MET	23
HIS	21
SER	21
ASN	20
GLN	17
ASP	14
TRP	12
GLU	11

Table 2.2: HEC: AA Frequency Table within 7A

Comparison with Background Amino Acid Frequencies

HEC: AA Frequency of Monomer

Figure 2.5: HEC: AA Frequency of Monomer

Generally, the heme-c monomer AA frequency profile appears similar to the heme-b monomer, with a high frequency of alanine and leucine, followed by a divergence in the frequency of amino acids and therefore a struggle to form any meaningful discussion when it comes to comparing the binding pocket frequencies against background frequencies.

Distributon of Amino Acids by Distance

HEC: Distribution of Residues by Mean_Distance

Figure 2.6: HEC: Residue Distribution by Distance

The distribution of amino acids over distance from the heme iron for HEC is similar to HEM, with some exceptions. Cys, His, Tyr again are amongst the closest residues to HEC, likely for the same reasons of very strong polar interactions or coordination. Additionally, cysteine forms covalent, thioether bonds with heme-c, providing further justification for its proximity. However, for heme-c, lysine and methionine also are very proximal. The methionine residues are nonpolar, small, neutral; lysine is polar and positively charged; neither of these residues are favored to be included in the heme-b binding environment despite very similar structures. The reason for their inclusion so close to the binding pocket is therefore unclear, but based on their distribution, and lysine being even more close proximity than heme, the results suggest these two residues may have important roles.
2.1.3 Verdoheme

Amino Acid Frequencies in Binding Pocket

VERDOHEME: AA Frequency within 7A of VERDOHEME

Figure 2.7: VERDOHEME: AA Frequency within 7A

 Table 2.3:
 VERDOHEME: AA Frequency Table within 7A

Residue	Freq
LEU	16
ALA	13
TYR	13
ARG	11
GLY	11
PHE	11
GLU	10
SER	10
VAL	9
LYS	8
ASN	7
HIS	7
MET	7

Residue	Freq
THR	7
GLN	6
ILE	6
ASP	4

 Table 2.3: VERDOHEME: AA Frequency Table within 7A (continued)

The frequency of amino acids in the binding pocket for verdoheme is dissimilar from heme-b and heme-c above. This is fairly surprising, given that verdoheme is an intermediate in the binding pocket for heme-b within heme oxygenases.

Leucine and alanine are again most frequent, but after these, results diverge. Tyrosine and arginine are next most frequent - surprising, given that this is still the same pocket that bound heme-b. The data for heme-b indicate more frequent nonpolar residues before tyrosine. Chemically, it may be that as heme-b is oxidized, there is greater need for polar interactions; this would help to explain the high frequency of polar residues, but does not explain the shift in amino acid frequencies within what would be expected to be a similar binding pocket - all verdoheme PDBs in this in study were sourced from heme oxgenase proteins. Some heme oxygenases are included for heme-b, but they are amongst a diverse set of proteins. Therefore, the heme oxygenase environment may simply be host to more polar residues than normal for hemoproteins. This also agrees with tyrosine's inclusion in redox reactions, and it may be favored to be present in heme oxygenase. These results indicate more about the heme oxygenase environment than the verdoheme binding environment - however, these two are inseparable, given verdoheme only appears in heme oxygenase. A dedicated investigation to the heme binding environment for heme oxygenase, may therefore be warranted in future study.

Glycine is the next most frequent - it is in lower frequency, relatively, for heme-b. As with other heme molecules, it is not clear as to what the role of glycine is in binding verdoheme.

Comparison with Background Amino Acid Frequencies

VERDOHEME: AA Frequency of Monomer

Figure 2.8: VERDOHEME: AA Frequency of Monomer

Besides the frequencies of leucine and alanine, which have been found for heme-b and heme-c above to be highly frequent in hemoproteins at large, the frequency profiles for the verdoheme binding environment and monomers is shown to be quite dissimilar, supporting the results for the binding environment as unique, not simply due to background frequency.

Distributon of Amino Acids by Distance

The low sample size for verdoheme leads here to a poor figure with few residues plotted. This is likely attributable to an insufficient amount of distances and residues to cross-reference against each other, an operation that successfully occurs for all similar graphs. Regardless, the data that are plotted will be discussed.

The highly conserved histidine for hemoproteins is exclusively within 5A for verdoheme. This result again suggests that at least some of the data for verdoheme

may be highly biased because of the small sample size - heme-b data included a greater range for histidine. Or, perhaps for heme oxygenases heme is solely present to coordinate the iron atom, leading to all His residues being nearby verdoheme. The close proximity of glycine to verdoheme is also unexpected and unable to be explained without further study. The remainder of the residues plotted appear to follow the trends seen in for the other types of heme, with distance values centered around 6A and unremarkable distributions.

VERDOHEME: Distribution of Residues by Mean_Distance

Figure 2.9: VERDOHEME: Residue Distribution by Distance

2.1.4 Siroheme

Amino Acid Frequencies in Binding Pocket

SRM: AA Frequency within 7A of SRM

Figure 2.10: SRM: AA Frequency within 7A

Residue	Freq
ARG	83
GLN	51
CYS	43
LYS	42
THR	40
ASN	39
GLY	37
ALA	35
PHE	31
VAL	31
ASP	30
LEU	20
SER	20

Table 2.4	4: SRM:	AA	Frequency	Table	within	7A

Residue	Freq
MET	18
ILE	17
PRO	17
HIS	15
TRP	10
TYR	6
GLU	2

Table 2.4: SRM: AA Frequency Table within 7A (continued)

Siroheme, with a structure highly dissimilar to the other heme molecules examined, should be expected to have a different amino acid frequency profile – and indeed we confirm this in our results.

Nonpolar residues are not the most abundant in the siroheme binding pocket. In fact, disproportionately frequent to the rest of the residues in the binding pocket is arginine. Siroheme is saturated with carboxyl and propionate groups; the entire porphyrin ring surrounded by polar, electronegative groups. And therefore a polar, positively charged amino acid such as arginine is reasonable to expect in the binding pocket – what is striking, however is the extreme preference for arginine; such a profile does not exist for the other types of heme. This can be at least explained; siroheme contains propionate groups that likely still form polar interactions with arginine salt bridges, and the carboxyl groups may also form polar interactions with arginine, therefore highly favoring arginine's presence in the binding pocket.

Arginine is followed by other polar amino acids: glutamine, cystine, lysine, threonine, and asparagine; a more homogenous trend than seen for the other heme molecules, in that the trend is not interrupted by residues of opposing polarity as for other types of heme. Though these results could be expected, they demonstrate the extent to which siroheme's binding pocket is dominated by polar residues. The preference for arginine out of all polar amino acids may be attributed to its positive charge, and ability to form salt bridges that interact with the propionate groups; lysine also has a positive charge and is polar, but does not form salt bridge interactions with the propionate groups. Cysteine is used to coordinate the iron of

siroheme, and while this did not significantly affect the frequency for other heme molecules, it is still possible this increases the value for cysteine for siroheme.

After this group of polar amino acids, glycine is the next most frequent. Glycine has been situated at about a median frequency for other heme molecules, so perhaps its frequency here, slightly above the median, is of note. Again, for glycine in particular, the reason for its particular frequency cannot be determined from this data, but it appears to have some role.

Finally we come to several nonpolar amino acids: alanine, phenylalanine, and valine. These amino acids define roughly the median of the frequency data. With all the polar groups on siroheme, it might be expected that only polar interactions would be desirable. However, the not minuscule frequency of these residues suggests nonpolar interactions still occur in the binding pocket; the porphyrin ring remains, as well as some methyl groups.

After these nonpolar residues the remaining frequencies do not follow a clear trend but regardless are discussed. After aspartate the remaining frequencies are considerably lower. This may be an artefact of a small sample size, or may suggest the remaining residues form, if any, far less favorable interactions with the heme.

Aspartate appears next most frequently; it is a polar, negatively charged amino acid (at pH 7). Siroheme is saturated with other electronegative groups; perhaps there is some repulsion between these groups and aspartate – this could explain why, despite being a polar residue, arginine does not appear very frequently in the binding pocket.

Leucine is the first of the residues of diminished frequency. It is nonpolar. It, and, skipping a frequency, methionine, isoleucine, and proline, appear less frequently, and therefore are likely disfavored from forming the relatively few nonpolar interactions that do occur. Why is not clear - other small, nonpolar residues, and other lengthy nonpolar residues appear in the pocket in greater frequency.

Serine appears just less frequently than leucine, and in this context may likely be considered a polar residue that is not as strongly polar or positively charged and

therefore less preferred to include in the binding pocket to form polar interactions with siroheme as other residues.

Histidine appears quite infrequently. As with siroheme, other, more strongly polar and perhaps less bulky residues are likely preferred.

Tryptophan is the least frequent nonpolar residue. The presence of a weak hydrogen bond and its size may preclude its inclusion in the binding pocket in lieu of more uniformly nonpolar residues that take up less space and can better form interactions with the few nonpolar areas of siroheme.

Tyrosine and glutamate are the least frequent polar residues. This is in stark opposition to the other heme molecules - tyrosine seemed to be favored for other heme molecules to form interactions with the propionate groups. Glutamate is also extremely infrequent, even in spite of its similarity to aspartate. Both are electronegative at pH 7 - glutamate's extra carbon may provide sufficient steric hindrance to render it less favored. In either case, the infrequency of these residues and the tendencies of other, more intensely polar or nonpolar amino acids to be more populous, suggests tyrosine and glutamate, in the siroheme binding environment, do not interact strongly enough to be favored over other polar residues.

Comparison with Background Amino Acid Frequencies

Figure 2.11: SRM: AA Frequency of Monomer

Compared to the other heme molecules, siroheme's binding pocket amino acid frequencies are even more different than the background frequencies. Arginine is far and away the most frequent amino acid in the binding pocket; leucine is the most populous amino acid in the monomer overall, seeming to follow a trend amongst the hemoproteins examined so far. Again, discussing the remainder of the frequencies of the monomer would be conjecture, but it is worthwhile to note that the pocket frequencies appear unique against the background.

Distributon of Amino Acids by Distance

Residues appear less uniformly distributed over distance for siroheme binding pockets when compared against the distribution for other heme molecules. Cysteine is the only residue that comes within 5A of siroheme; it is used to coordinate

the iron in siroheme, so this result is expected. The lack of other residues being within 5A, differing from other heme molecules, suggests the many carboxyl and propionate groups on siroheme prevent, or preclude the need for closer interaction except for coordinating residues.

SRM: Distribution of Residues by Mean_Distance

Figure 2.12: SRM: Residue Distribution by Distance

2.2 Volume of Heme Binding Pockets

Figures are shown below.

Volume results were rather spread out, with close agreement only found for heme-b. In general, volume for all heme molecules regardless of distance cutoff centered at approximately 1200 A³. This result may be useful in protein engineering efforts, especially for selection or design of binding pockets.

Figure 2.13: HEM: Volume of Binding Pocket

Figure 2.14: HEC: Volume of Binding Pocket

Figure 2.15: SRM: Volume of Binding Pocket

Figure 2.16: VERDOHEME: Volume of Binding Pocket

2.3 Surface Areas of Heme Molecules and Their Binding Pockets

2.3.1 Surface Area of Heme Molecules

Both solvent accessible and solvent excluded surface areas were calculated for heme molecules and binding pockets. The differences between these two measures were discussed in Section 1.3.3. The results are extremely similar for solvent accessible and solvent excluded surface areas; and therefore only solvent accessible surface area, a measure more practically interpreted into chemical phenomena, is discussed below. Figures and data for solvent excluded surface areas are available in Appendix A.2, A.3, and B.4. Solvent accessible surface area figures are shown below; data tables are available in Appendix B.4.

The solvent accessible surface area for all heme *molecules* themselves centers

around values of 1000 A². This result is reasonable, given the similarity in size and structure of all heme molecules, in spite of the attached groups. Figures are shown below; full data tables are available in Appendix B.4. The extreme outliers are likely artefacts of the method used to calculate surface area and potential conflicts with the method used to convert multimeric proteins to monomers.

2.4 Ligand Solvent Accessible Surface Area

HEM : Ligand Accessible SA (A²)

Figure 2.17: HEM: Ligand Accessible Surface Area

Figure 2.18: HEC: Ligand Accessible Surface Area

Figure 2.19: SRM: Ligand Accessible Surface Area

VERDOHEME : Ligand Accessible SA (A²)

Figure 2.20: VERDOHEME: Ligand Accessible Surface Area

2.4.1 Surface Area of Binding Pockets

2.5 Pocket Solvent Accessible Surface Area

Figure 2.21: HEM: Pocket Accessible Surface Area

Figure 2.22: HEC: Pocket Accessible Surface Area

Figure 2.23: SRM: Pocket Accessible Surface Area

VERDOHEME Pocket Acessible SA (A²)

Figure 2.24: VERDOHEME: Pocket Accessible Surface Area

The surface area of binding pockets is more varied than the heme surface areas.

Heme-b and verdoheme, being highly similar molecules, with the same propionate groups, and one the derivative of the other, have quite similar surface areas, centering around 10,000-11,000 A^2 . This is useful as a baseline to discuss the surface area of the binding pockets of the other two heme molecules below.

The surface area of the binding pocket of heme-c is considerably lower than that of heme-b and verdoheme. Its values center around 7500 A^2 . Heme-c is bound covalently to the hemoprotein, forming thioether bonds with cysteine residues at two sites; this result suggests that the covalent bonds may exclude these sites from interacting with water molecules. Further study would be required to confirm this phenomenon.

The surface area of siroheme's binding pocket is far greater than that for other heme molecules: values center around 21000 A^2 . Siroheme's extra groups on the

porphyrin ring do not appear to affect its own surface area, per above. However, it is effectively a very polar molecule and appropriately the binding pocket is highly saturated with very polar amino acids, as seen in the amino acid frequency analysis. The binding pocket is therefore completely different from the other heme molecules, and these populous, polar amino acids favorably interact with aqueous solvent, negating the need to bury any hydrophobic residues and reduce surface area.

2.6 Angular Data

As briefly mentioned in the introduction, angular data was generated but will not be discussed extensively. Figures may be found in Appendix A.4 and A.5 data tables may be found in Appendix B.5 and B.6. Amongst the results are tight distributions of planar angles and CA-CB-Fe angles for some residues; but much of the data demonstrates a broad range of angles that may be formed. The data may be useful for protein engineering and residue placement, but cannot be productively discussed and are therefore relegated to the appendices.

2.7 Limitations of the Study

A high throughput framework was built to conduct this study. However, guaranteeing the quality of PDBs to enable the scripts to function properly proved challenging, and the sample size is small, although diverse. This problem only exists for heme-b and heme-c – for siroheme and verdoheme, all structures in the PDB capable of being used, were used. Heme-b and heme-c would only require more trial and error, or pre-processing, to be input to the framework that has been built.

Although many hypotheses have been suggested in the discussion to explain the data, limited experimental data exists to confirm them. Future work may include wet lab experiments to confirm these hypotheses, such as mutating several hemoproteins to contain higher or lower percentages of nonpolar residues in the binding pocket, and observing how the binding of heme is affected.

Conclusion

Some of these data could also be analyzed more thoroughly, for example eliminating the coordinating amino acids from the amino acid frequency data. This was not possible here due to how the framework is constructed: coordinating residues are not identified, nor is a definition proposed to identify coordinating residues. Manual input of known coordinating residues would be necessary to be certain that they could be eliminated from the final dataset analyzed, but this was beyond the scope of this study.

UCSF-Chimera was used to generate all data used in this study; many algorithms have remained unchanged for some time (surface area calculations are sourced from MSMS (1996) and volume calculations from Surfnet (1995)). It would be well to compare with any new algorithms that are developed to calculate surface area or volume, or with any experimental data that may be used confirm these numbers.

The reason being for this desired orthogonality is that the algorithms themselves may certainly introduce bias based off how they work. Surfnet generates 3D-contour surfaces to identify cavities; in practice, many small "bubbles" or insignificant cavities were generated in the study, and are filtered out during analysis – the parameters chosen can also significantly influence the behavior of the algorithm; in this study, the default parameters appeared to generate the most reasonable binding pocket. But this assessment is based off subjective visual observation by the author, and therefore introduces further bias. One may expect applying the same algorithm with the same parameters to many PDBs may at least introduce the same bias to all samples, but the algorithm may distort some PDBs more than others depending on the shape and size of their binding pocket.

3 Conclusion

A knowledge gap in the binding environment for heme exists in the present literature. A high-throughput framework employing UCSF Chimera was constructed to process diverse sets of hemoproteins and output information about their binding pockets: amino acid frequencies and distances from heme, volume, surface area, angles. Data was gathered and predicted from representative and varied datasets for heme-b, heme-c, verdoheme, and siroheme, and their respective hemoproteins. R was used to analyze all data.

The results of this study suggest that binding pockets for hemoproteins have some requirements for binding that may have been overlooked to date. The data and their trends observed in this study demonstrate several phenomena.

First, the heme binding environments for heme-b, heme-c, and verdoheme contain high populations of nonpolar amino acids, suggesting nonpolar interactions may be of greater importance than previously thought to providing the necessary interactions to bind heme. The binding environment for siroheme, by contrast, is shown to be extremely enriched with polar amino acids, which is not very surprising; but this binding environment also still contains many nonpolar amino acids, reinforcing the idea that the polar interactions for all heme molecules, while necessary, may be insufficient for heme binding.

3. Conclusion

Second, most of the volume data for the binding pockets of all heme molecules centers around a value of 1200 A³. Surface areas of heme-b and verdoheme binding pockets are similar, approximately 10000 A², the surface area for heme-c is less, approximately 7500 A², and for siroheme is approximately 21000 A². These values may be useful in the design of artifical metalloenzymes.

Additionally, the seeming conservation of the volume size but the variety in pocket surface areas demonstrates that while the heme molecules may be of similar size and, besides attached groups, similar structure, the attached groups will significantly affect what interactions occur in the binding pockets, and therefore the shape and exposure to solvent in the binding pockets. Siroheme is strongly polar and its binding pocket has a large surface area and is therefore highly solvent exposed, as compared to heme-b which has more nonpolar groups that must be buried and therefore requiring a smaller surface area.

Finally, angular data were generated; but the phenomena observed, such as some residues having tight ranges of angles in relation to heme or the heme iron, cannot be interpreted as useful results, except perhaps for some protein engineering efforts that may have interest in the range or distribution of possible angles for a specific residue.

These results may be useful for the rational design of hemoproteins, with the importance of nonpolar interactions in particular likely of great interest. The framework constructed for this study can be applied to any list of PDBs and their respective ligands, thereby facilitating similar research for other proteins. Appendices

A.1 AA Frequency

Figure A.2: HEC: AA Frequency

Figure A.3: SRM: AA Frequency

Figure A.4: VERDOHEME: AA Frequency

A.2 Ligand Excluded Surface Area

Figure A.5: HEM: Ligand Excluded Suface Area

Figure A.6: HEC: Ligand Excluded Suface Area

Figure A.7: SRM: Ligand Excluded Suface Area

Figure A.8: VERDOHEME: Ligand Excluded Suface Area

A.3 Pocket Excluded Surface Area

Figure A.9: HEM: Pocket Excluded Surface Area

Figure A.10: HEC: Pocket Excluded Surface Area

Figure A.11: SRM: Pocket Excluded Surface Area

VERDOHEME : Pocket Excluded SA (A²)

Figure A.12: VERDOHEME: Pocket Excluded Surface Area

A.4 All Planar Angles

Figure A.13: HEM: All Planar Angles

Figure A.14: HEC: All Planar Angles

Figure A.15: SRM: All Planar Angles

Figure A.16: VERDOHEME: All Planar Angles

A.5 All CA-CB-Fe Angles

Figure A.17: HEM: All CA-CB-Fe Angles

Figure A.18: HEC: All CA-CB-Fe Angles

Figure A.19: SRM: All CA-CB-Fe Angles

Figure A.20: VERDOHEME: All CA-CB-Fe Angles

B Tables

B.1 Molecule Names and Source Organisms

PDB ID	Molecule Name	Source Oreanian
1B2V	PROTEIN	SERRATIA
	(HEME-BINDING PROTEIN A):	MARCESCENS;
1B5M	CYTOCHROME B5;	RATTUS
1DK0	HEME-BINDING	NORVEGICUS; SERRATIA
10740	PROTEIN A;	MARCESCENS;
ΙΔΚΠ	PROTEIN A:	MARCESCENS:
1ICC	CYTOCHROME B5	RATTUS
	OUTER	NORVEGICUS;
	MITOCHONDRIAL MEMDDANE	
1IDII	MEMBRANE	ESCHEDICIUA COLL
ПГП 1N45	UATALASE NPII; HEME OVVCENASE 1.	HOMO SADIENS:
1P3T	HEME OXYGENASE 1.	NEISSERIA
11.01		MENINGITIDIS;

 Table B.1: HEM: Molecules and Source Organisms

	C:	
	Name	Teality.
A D	cile	, c ^e /
PDV	Note	South
1QHU	PROTEIN	ORYCTOLAGUS
1019	(HEMOPEXIN);	CUNICULUS;
1622		CUNICULUS;
1SI8	CATALASE;	ENTEROCOCCUS
1SY2	NITROPHORIN 4.	FAECALIS; RHODNIUS
-~		PROLIXUS;
1U9U	CYTOCHROME B5;	BOS TAURUS;
IVGI	HEME OXYGENASE 1;	RATTUS NOPVECICUS:
1ZVI	NITRIC-OXIDE	RATTUS
	SYNTHASE, BRAIN;	NORVEGICUS;
2BHJ	NITRIC OXIDE	MUS MUSCULUS;
2C.I0	SYNTHASE; CHLOROPEROXIDASE:	CALDABIOMYCES
		FUMAGO;
$2\mathrm{CN4}$	HEMOPHORE HASA;	SERRATIA
2CPO	CHLOROPEROXIDASE;	LEPTOXYPHIUM
0 F 0 V	MVOCI ODIN.	FUMAGO;
	MTOGLODIN;	CATODON:
2FC2	NITRIC OXIDE	BACILLUS SUBTILIS;
	SYNTHASE;	
211Z	MELANIN	SHEWANELLA
	PROTEIN TYRA	ONEIDEN515;
	PUTATIVE;	
2IPS	LACTOPEROXIDASE;	BOS TAURUS;
2J0P	HEMIN TRANSPORT	YERSINIA
2J18	CHLOROPEROXIDASE;	CALDARIOMYCES
		FUMAGO;
206P	IRON-REGULATED	STAPHYLOCOCCUS
	SURFACE	AUREUS SUBSP.
	DETERMINANT PROTEIN C.	AUREUS;
	11012100,	

 Table B.1: HEM: Molecules and Source Organisms (continued)

	Faire	a regalizati
- P	cille	
208	Projec.	South
2Q6N	CYTOCHROME P450	ORYCTOLAGUS
2R7A	2B4; BACTERIAL HEME	CUNICULUS; SHIGELLA
2SPL	BINDING PROTEIN; MYOGLOBIN;	DYSENTERIAE; PHYSETER CATODON
2VEB	PROTOGLOBIN;	METHANOSARCINA ACETIVORANS;
3HX9	PROTEIN RV3592;	MYCOBACTERIUM TUBERCULOSIS
3MVF	NITROPHORIN-4;	RHODNIUS PROLIXUS
3QZN	IRON-REGULATED SURFACE	STAPHYLOCOCCUS AUREUS SUBSP.
	DETERMINANT	AUREUS;
3QZZ	METHANOSARCINA	METHANOSARCINA
- ~	ACETIVORANS PROTOGLOBIN;	ACETIVORANS;
3SIK	CONSERVED DOMAIN PROTEIN;	BACILLUS ANTHRACIS;
3TGC	NITROPHORIN-4;	RHODNIUS
3VP5	TRANSCRIPTIONAL	LACTOCOCCUS
3ZJS	PROTOGLOBIN;	METHANOSARCINA
4B8N	CYTOCHROME	OSTREOCOCCUS
4CAT	B5-HOST ORIGIN; CATALASE;	JAURI VIRUS 2; PENICILLIUM JANTHINELLUM;
4CDP	PUTATIVE HEME/HEMOGLOBIN TRANSPORT PROTEIN:	ESCHERICHIA COLI;
4I3Q	CYTOCHROME P450	HOMO SAPIENS;
4JET	3A4; HEMOPHORE HASA;	YERSINIA PESTIS;

 Table B.1: HEM: Molecules and Source Organisms (continued)

Ð	1e Haile	Organian
PDB	Malecut	Source
4MF9	HEMIN DEGRADING	PSEUDOMONAS
4MYP	IRON-REGULATED SURFACE DETERMINANT PROTEIN A;	LISTERIA MONOCYTOGENES;
4NL5	HEME-DEGRADING MONOOXYGENASE HMOB	MYCOBACTERIUM TUBERCULOSIS;
4UZV	HEMOGLOBIN;	THERMOBIFIDA
4XZD	EXTRACELLULAR HEME ACQUISITION	YERSINIA PSEUDOTU- BERCULOSIS IP
4Y1Q	HEMOPHORE HASA; EXTRACELLULAR HEME ACQUISITION	YERSINIA PSEUDOTU- BERCULOSIS IP
5CN5	MYOGLOBIN;	EQUUS CABALLUS;
5GJ3	PERIPLASMIC	ROSEIFLEXUS SP.
5KZL	HEME OXYGENASE;	LEPTOSPIRA INTERROGANS:
501L	RUBBER OXYGENASE:	STREPTOMYCES SP. (STRAIN K30):
5O1M	RUBBER OXYGENASE:	STREPTOMYCES SP. (STRAIN K30):
5VEU	CYTOCHROME P450 3A5;	HOMO SAPIENS;
6A2J	HEME A SYNTHASE;	BACILLUS SUBTILIS (STRAIN 168);
7C74	LACTOPEROXIDASE;	BOS MUTUS;
(DMR	LACTOPEROXIDASE;	BOS MUTUS;

 Table B.1: HEM: Molecules and Source Organisms (continued)

	Name	Tealisti
PDB ID	Molecule	Source
1BBH	CYTOCHROME C';	ALLOCHROMATIUM VINOSUM:
1S56	HEMOGLOBIN-LIKE PROTEIN HBN:	MYCOBACTERIUM TUBERCULOSIS:
1W2L	CYTOCHROME OXIDASE SUBUNIT II;	RHODOTHERMUS MARINUS;
2BC5	SOLUBLE CYTOCHROME B562;	ESCHERIĆHIA COLI;
2BH5	CYTOCHROME C-550;	PARACOCCUS VERSUTUS;
3EAH	NITRIC OXIDE SYNTHASE,	HOMO SAPIENS;
3X15	ENDOTHELIAL; CYTOCHROME C552;	AQUIFEX AEOLICUS VF5:
5KPF	CYTOCHROME C ISO-1:	SACCHAROMYCES CEREVISIAE:
5LFT	CYTÓCHROME C ISO-1;	SACCHAROMYCES CEREVISIAE;
5T8W	CYC1P;	SACCHAROMYCES CEREVISIAE;
6VDQ	3-METHYL-L- TYROSINE PEBOXYGENASE:	STREPTOMYCES LAVENDULAE;
6WZA	SOLUBLE CYTOCHROME B562	ESCHERICHIA COLI;
6XNK	CYTOCHROME C;	HOMO SAPIENS;

 Table B.2: HEC: Molecules and Source Organisms

BID	Actile Name	UICE Oreganian
$\mathcal{Q}^{\mathcal{V}}$	Â10	çor
1ZJ8	PROBABLE	MYCOBACTERIUM
	FERREDOXIN-	TUBERCULOSIS:
	DEPENDENT NITRITE	,
	REDUCTASE NIRA;	
2AKJ	FERREDOXIN-	SPINACIA
	NITRITE REDUCTASE,	OLERACEA;
	CHLOROPLAST;	
2AOP	SULFITE REDUCTASE	ESCHERICHIA COLI;
	HEMOPROTEIN;	
3B0G	NITRITE	NICOTIANA
	REDUCTASE;	TABACUM;
3VKP	NITRITE	NICOTIANA
	REDUCTASE;	TABACUM;
3VLX	NITRITE	NICOTIANA
	REDUCTASE;	TABACUM;
3VLY	NITRITE	NICOTIANA
	REDUCTASE;	TABACUM;
3VLZ	NITRITE	NICOTIANA
-1101	REDUCTASE;	TABACUM;
5H8V	SULFITE REDUCTASE	ZEA MAYS;
	[FERREDOXIN],	
	CHLOROPLASTIC;	

 Table B.3: SRM: Molecules and Source Organisms

 Table B.4:
 VERDOHEME: Molecules and Source Organisms

PDB ID	Molecile Name	Source Oreanian
2ZVU	HEME OXYGENASE 1;	RATTUS
3MOO	HEME OXYGENASE;	NORVEGICUS; CORYNEBACTERIUM
	,	DIPHTHERIAE;
1TWN	HEME OXYGENASE 1;	HOMO SAPIENS;
1TWR	HEME OXYGENASE 1;	HOMO SAPIENS;

B.2 Amino Acid Frequencies at 5A Distance Cutoff

Residue	Freq
PHE	153
LEU	152
HIS	97
ILE	97
TYR	97
VAL	97
ARG	95
ALA	87
GLY	70
SER	64
THR	60
LYS	49
MET	46
GLN	37
TRP	37
ASP	36
GLU	35
ASN	33
PRO	31
CYS	12

	Table B.5:	HEM	AA	Freq,	Cutoff	5A
--	------------	-----	----	-------	--------	----

 Table B.6: HEC AA Freq

Residue	Freq
LEU	48
PHE	29
TYR	27
GLY	26
CYS	23
VAL	23
ALA	18
HIS	18
LYS	18
MET	18

Residue	Freq
1.5.0	
ARG	17
ILE	17
THR	17
PRO	15
SER	15
GLN	10
TRP	9
ASN	8
GLU	6
ASP	1

 Table B.6: HEC AA Freq (continued)

Table B.7: VERDOHEME AA Freq

Residue	Freq
LEU	9
ARG	8
GLY	8
PHE	8
SER	7
ALA	6
LYS	5
ASN	4
GLU	4
HIS	4
MET	4
TYR	4
GLN	3
THR	3
VAL	2
ILE	1

 Table B.8:
 SRM AA Freq

_

Residue	Freq
ARG	65
GLN	32
LYS	32
THR	30

Residue	Freq
ASN	28
CYS	28
PHE	25
SER	19
ALA	18
GLY	18
ILE	13
LEU	9
MET	9
HIS	3
PRO	3
VAL	3
ASP	2
TYR	2

 Table B.8: SRM AA Freq (continued)

B.3 Distances

B.3.1 All Distances from Heme Fe to Atoms of Residues in Binding Pocket

	PDB ID	Residue Code	Residue Numbe	s Aton	Distance
1	1B2V	HIS	83	ND1	4.091840
2	1B2V	TYR	75	CG	5.370524
3	1B2V	VAL	37	CG2	5.119564
4	1B2V	HIS	83	NE2	5.795310
5	1B2V	VAL	37	CG1	5.302293
6	1B2V	LEU	77	CA	6.357591
7	1B2V	SER	42	Ο	6.611193
8	1B2V	HIS	83	CA	5.317261
9	1B2V	LEU	77	Ν	6.764107
10	1B2V	TYR	75	CZ	2.888333
11	1B2V	TYR	75	CE1	3.676968

 Table B.9: HEM: All Distances, Atoms to Fe

	008-10	Residue Co	de Resilue Munthe	st blott	Vistance
	Y ADOLL	V	<u> </u>	ÇD a	<u> </u>
12	1B2V 1D9V	TYR	75 75	CD2 CD1	4.821397
13 14	1B2V 1B2V	I I K TVP	75 75	CDI	4.880003 6 708600
14 15	1B2V 1R2V	TVR	75 75	CE2	0.798099 3.624167
10	1021		10		0.024101
16	1B2V	HIS	83	CEI CD1	4.910880
17	1B2V	HIS	32	CEI	3.237980
18	1B2V	HIS	32	CD2 ND1	3.180870
19	1B2V 1D9V	HIS	32	NDI CD	4.330731
20	1B2V	HIS	32	CB	5.730445
21	1B2V	HIS	32	0	5.953564
22	1B2V	HIS	32	С	6.358164
23	1B2V	MET	140	CE	5.777781
24	1B2V	MET	140	SD	6.659910
25	1B2V	HIS	83	CB	4.758791
26	1B2V	HIS	32	CA	6.565816
27	1B2V	TYR	75	OH	1.954327
28	1B2V	SER	42	OG	5.900798
29	1B2V	SER	42	CB	6.636304
30	1B2V	HIS	32	CG	4.355931
31	1B2V	LEU	77	0	6.769296
32	1B2V	TYR	137	CE1	6.096698
33	1B2V	SER	42	CA	6.625250
34	1B2V	TYR	137	CD1	6.368337
35	1B2V	HIS	83	CG	4.725560
36	1B2V	HIS	83	Ο	5.883823
37	1B2V	HIS	83	С	5.884565
38	1B2V	ASN	41	0	6.894251
39	1B2V	HIS	83	Ν	6.545924
40	1B2V	VAL	37	CB	5.853806
41	1B2V	THR	84	Ν	6.798527
42	1B2V	HIS	83	CD2	5.752036
43	1B2V	HIS	32	NE2	2.263051
44	1B2V	LEU	77	CD1	5.828324
45	1B5M	HIS	63	NE2	1.819890
46	1B5M	HIS	63	CE1	3.023255

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	me Col	e we Munite	5	N ^{ce}
	PDB-	Reside	Residu	Atom	Distar
47	1B5M	HIS	63	CD2	2.588060
48	1B5M 1D5M	HIS	63	NDI CC	4.027399
49 50	1 B 3 M 1 B 5 M	HIS HIS	03 63	CB	5.857789 5.108178
50			05	CD	5.130170
51 F9	1B5M 1D5M	PRO	40	CD CZ	5.362624
02 52	1 D 3 M 1 R 5 M	PHE	30 63		0.731102 6 222160
99 54	100M 1R5M	HIS	05	UA N	6.222100
54 55	1B5M 1B5M	GLY	62	0	6.365897
56	1B5M	PRO	40	CG	6 038149
50 57	1B5M	VAL	40 61	CG2	6.762820
58	1B5M	VAL	61	CG1	5.208622
59	1B5M	VAL	61	CB	6.253291
60	1B5M	PRO	40	CB	6.380659
61	1B5M	HIS	39	NE2	1.918499
62	1B5M	LEU	46	CD2	5.100407
63	1B5M	LEU	46	CD1	6.238688
64	1B5M	LEU	46	CG	6.207115
65	1B5M	PRO	40	С	6.098869
66	1B5M	VAL	45	CG1	5.846522
67	1B5M	HIS	39	CG	4.056245
68	1B5M	PRO	40	CA	6.434682
69 70	1B5M 1D5M	PHE	58 59	CZ CE9	6.351848 5 187040
70	ID5M	PIL	58	CE2	5.187940
71 79	1B5M	PHE	58	CD2 N	5.070064
(2 73	1B5M 1D5M	РКО риб	40 E 0	N CC	5.880309 6.199960
13 74	1D0M 1R5M	ГПĽ РНГ	08 50	CB	U.133809 6 546370
74 75	1B5M 1B5M	PHE	58 58	0 0	6.794383
. . 76	1R5M	рнг	50	С А	6 501026
77	1B5M	HIS	30	CE1	2.767199
78	1B5M	GLY	42	0	6.731713
79	1B5M	GLY	41	Õ	5.998395
80	1B5M	GLY	41	С	5.685211
81	1B5M	GLY	41	CA	4,980319

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	BB	situe Co	de Numbe	55	.stallce
	$\mathcal{S}^{\mathcal{V}}$	Ro	Ro	b_{j}	\mathcal{D}_{Ir}
82	1B5M	GLY	41	Ν	4.888585
83	1B5M	HIS	39	ND1	3.934694
84	1B5M	PHE	35	CE2	5.325081
85	1B5M	HIS	39	CD2	3.022098
86	1B5M	HIS	39	CB	5.471773
87	1B5M	HIS	39	0	6.809826
88	1B5M	HIS	39	С	6.158780
89	1B5M	GLY	42	Ν	6.336121
90	1B5M	PHE	35	CD2	6.489161
91	1B5M	ALA	67	CB	5.797296
92	1B5M	HIS	39	CA	5.972168
93	$1 \mathrm{DK0}$	HIS	32	CE1	3.097081
94	$1 \mathrm{DK0}$	TYR	75	CD1	4.870310
95	$1 \mathrm{DK0}$	TYR	75	CG	5.439675
96	1DK0	TYR	75	CB	6.855877
97	$1 \mathrm{DK0}$	HIS	32	CD2	3.087544
98	1DK0	TYR	137	CE1	6.058239
99	$1 \mathrm{DK0}$	MET	140	CE	5.680994
100	$1 \mathrm{DK0}$	HIS	32	ND1	4.178511
101	1DK0	MET	140	SD	6.690840
102	1DK0	VAL	37	CG2	5.172684
103	$1 \mathrm{DK0}$	VAL	37	CG1	5.226870
104	$1\mathrm{DK0}$	VAL	37	CB	5.802353
105	1DK0	HIS	32	CG	4.227248
106	$1\mathrm{DK0}$	HIS	32	CB	5.635484
107	$1 \mathrm{DK0}$	HIS	83	NE2	5.746185
108	$1 \mathrm{DK0}$	HIS	83	CD2	5.738879
109	$1 \mathrm{DK0}$	HIS	83	CG	4.688593
110	$1 \mathrm{DK0}$	SER	42	CB	6.491744
111	$1 \mathrm{DK0}$	HIS	83	0	5.767033
112	$1 \mathrm{DK0}$	TYR	137	CD1	6.315661
113	$1 \mathrm{DK0}$	HIS	83	С	5.875345
114	1DK0	HIS	83	CA	5.309550
115	1DK0	HIS	83	Ν	6.515875
116	1DK0	HIS	32	Ο	5.920129

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	ODB ID	Coloresidue	de sesitie Munde	st Nton	O'stance
117 118 119 120	1DK0 1DK0 1DK0 1DK0 1DK0	THR SER SER HIS	33 42 42 32	N O C CA	6.991008 6.312383 6.937601 6.464415
121 122 123 124 125	1DK0 1DK0 1DK0 1DK0 1DK0	THR SER HIS HIS HIS	84 42 83 83 83	N CA ND1 CE1 CB	$\begin{array}{c} 6.799510 \\ 6.419147 \\ 3.985590 \\ 4.767730 \\ 4.746551 \end{array}$
126 127 128 129 130	1DK0 1DK0 1DK0 1DK0 1DK0 1DK0	LEU HIS LEU LEU LEU	77 32 77 77 77	CD1 C O CA N	5.795751 6.271135 6.856344 6.468919 6.888315
131 132 133 134 135	1DK0 1DK0 1DK0 1DK0 1DK0	ASN HIS TYR TYR TYR	41 32 75 75 75	O NE2 OH CZ CE2	$\begin{array}{c} 6.870425\\ 2.123754\\ 2.104736\\ 3.011905\\ 3.827799\end{array}$
136 137 138 139 140	1DK0 1DK0 1DKH 1DKH 1DKH	TYR TYR HIS HIS VAL	75 75 83 32 37	CE1 CD2 C NE2 CG2	3.681995 4.982425 5.475302 2.724049 5.406826
141 142 143 144 145	1DKH 1DKH 1DKH 1DKH 1DKH	VAL VAL MET HIS LEU	37 37 140 32 77	CG1 CB SD CD2 CD1	5.465432 6.056663 6.766447 3.417608 5.235716
146 147 148 149 150	1DKH 1DKH 1DKH 1DKH 1DKH	LEU LEU LEU LEU MET	77 77 77 77 77 140	CG CB O C CE	$\begin{array}{c} 6.605671 \\ 6.797675 \\ 6.249675 \\ 6.847101 \\ 6.272749 \end{array}$
151	1DKH	HIS	32	CG	4 691025

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		coi	le Nithile	\$	
	508	Residue	Residue	Atom	Distanc
152	1DKH	TYR	75	ОН	2.627310
153	1DKH	TYR	75	CZ	3.786304
154	1DKH	TYR	75	CE2	4.326754
155	1DKH	TYR	75	CE1	4.788814
156	1DKH	TYR	75	CD2	5.640713
157	1DKH	TYR	75	CD1	6.003591
158	1DKH	TYR	137	CE1	6.287721
159	1DKH	TYR	137	CD1	6.530572
160	1DKH	HIS	32	0	6.582967
161	1DKH	THR	84	Ν	6.267175
162	1DKH	HIS	83	NE2	6.220128
163	1DKH	HIS	83	CE1	5.346327
164	1DKH	HIS	83	CD2	5.826319
165	1DKH	HIS	32	CE1	3.857511
166	1DKH	HIS	83	CG	4.536138
167	1DKH	HIS	83	CB	3.988182
168	1DKH	HIS	83	Ο	5.472828
169	1DKH	HIS	32	CB	5.968356
170	1DKH	HIS	83	CA	4.987602
171	1DKH	HIS	83	Ν	6.204508
172	1DKH	HIS	32	CA	6.872067
173	1DKH	TYR	75	CG	6.376320
174	1DKH	HIS	32	ND1	4.892143
175	1DKH	HIS	32	С	6.888715
176	1DKH	LEU	77	CA	6.337690
177	1DKH	SER	42	Ο	6.070312
178	1DKH	HIS	83	ND1	4.180667
179	1ICC	PHE	58	CA	6.575948
180	1ICC	PHE	58	CZ	6.294185
181	1ICC	GLY	42	0	6.747263
182	1ICC	ALA	67	CB	6.085233
183	1ICC	GLY	41	O	6.760563
184	1ICC	GLY	41	C	6.125467
185	1ICC	PHE	58	CG	6.377746
186	1ICC	GLY	41	Ν	4.885432

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	Çe	de Numbe	Ş.	.S)
	PDB I	Residue	Residue	Atom	Distance
187	1ICC	PHE	58	CE1	5.178997
188	1ICC	PRO	40	CG	6.377972
189	1ICC	GLY	42	Ν	6.567660
190	1ICC	HIS	39	CG	4.140159
191	1ICC	PRO	40	С	6.026885
192	1ICC	PRO	40	CA	6.297086
193	1ICC	PRO	40	Ν	5.739901
194	1ICC	HIS	39	NE2	2.123104
195	1ICC	HIS	39	CB	5.505745
196	1ICC	HIS	39	CE1	3.226539
197	1ICC	HIS	39	CD2	2.926974
198	1ICC	HIS	39	ND1	4.243412
199	1ICC	PHE	58	CD1	5.245447
200	1ICC	HIS	39	0	6.677095
201	1ICC	HIS	39	С	6.041067
202	1ICC	HIS	39	CA	5.995586
203	1ICC	HIS	63	NE2	2.158759
204	1ICC	GLY	41	CA	5.123949
205	1ICC	HIS	63	CD2	2.978584
206	1ICC	HIS	63	ND1	4.298568
207	1ICC	PHE	58	CB	6.924354
208	1ICC	HIS	63	CG	4.195708
209	1ICC	HIS	63	CB	5.559863
210	1ICC	HIS	63	CA	6.336951
211	1ICC	HIS	63	Ν	6.820816
212	1ICC	VAL	45	CG2	5.992035
213	1ICC	VAL	61	CG2	6.129882
214	1ICC	VAL	61	CG1	5.163116
215	1ICC	VAL	61	CB	5.887227
216	1ICC	PRO	40	CD	5.404471
217	1ICC	PHE	35	CZ	5.656220
218	1ICC	PHE	35	CE2	5.581214
219	1ICC	PHE	35	CE1	6.965375
220	1ICC	PHE	35	CD2	6.904462
221	1ICC	PHE	58	0	6.678997

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ŷ	Ços	le Annie	5	°.
	PDB II	Residue/	Residue/	Atom	Distance
222	1ICC	PRO	40	СВ	6.254107
223	1ICC	LEU	46	CD1	6.354825
224	1ICC	LEU	46	CD2	5.305231
225	1ICC	LEU	46	CG	6.164095
226	1ICC	HIS	63	CE1	3.261015
227	1IPH	TYR	415	CD1	5.321445
228	1IPH	TYR	415	CG	5.753097
229	1IPH	TYR	415	CD2	5.155005
230	1IPH	PHE	214	CZ	4.709378
231	1IPH	VAL	199	CG1	5.331401
232	1IPH	VAL	199	CB	6.674711
233	1IPH	VAL	199	0	6.876508
234	1IPH	VAL	127	CG1	6.932478
235	1IPH	VAL	127	CB	6.007625
236	1IPH	PHE	214	CD2	6.247230
237	1IPH	PHE	214	CD1	6.328742
238	1IPH	ARG	411	NH2	4.309991
239	1IPH	ARG	411	NH1	5.763972
240	1IPH	ARG	411	CZ	4.644111
241	1IPH	ARG	411	NE	4.267373
242	1IPH	ARG	411	CD	5.225517
243	1IPH	ARG	411	CG	5.411208
244	1IPH	ARG	411	CA	6.789246
245	1IPH	PRO	393	CD	6.630299
246	1IPH	ARG	411	CB	6.156776
247	1IPH	PRO	393	CG	6.777688
248	1IPH	PHE	206	CZ	6.628821
249	1IPH	PHE	206	CE1	6.703106
250	1IPH	SER	414	OG	6.728176
251	1IPH	HIS	128	NE2	4.722708
252	1IPH	HIS	128	CE1	5.843978
253	1IPH	HIS	128	CD2	4.703907
254	1IPH	HIS	128	ND1	6.463455
255	1IPH	HIS	128	CG	5.886071
256	1IPH	HIS	128	CB	6.662541

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	D Cole Aunher				
	5DB T	Residue	Residue	Atom	Distant
257	1IPH	VAL	127	CG2	4.705092
258	1IPH	PHE	214	CE2	5.236705
259	1IPH	PHE	214	CE1	5.340604
260	1IPH	VAL	127	0	6.725119
261	1IPH	VAL	127	С	6.910519
262	1IPH	PHE	214	CG	6.743406
263	1IPH	TYR	415	CE1	4.124350
264	1IPH	TYR	415	OH	2.030382
265	1IPH	TYR	415	CZ	3.229706
266	1IPH	TYR	415	CE2	3.915944
267	1IPH	ASN	201	OD1	6.396844
268	1N45	THR	135	Ο	6.713859
269	1N45	HIS	25	NE2	1.986061
270	1N45	LEU	147	CD2	6.116868
271	1N45	LEU	147	CD1	5.813325
272	1N45	LEU	147	CG	6.417391
273	1N45	GLU	29	OE2	6.288778
274	1N45	HIS	25	CE1	2.963000
275	1N45	GLU	29	CD	6.437607
276	1N45	GLU	29	CG	6.106144
277	1N45	ALA	28	CB	6.981230
278	1N45	PHE	207	CD2	6.658300
279	1N45	GLY	143	Ο	6.659951
280	1N45	GLY	143	С	6.316242
281	1N45	GLY	143	CA	5.140301
282	1N45	GLY	143	Ν	5.415299
283	1N45	SER	142	CB	6.192592
284	1N45	SER	142	0	6.788654
285	1N45	SER	142	\mathbf{C}	6.245701
286	1N45	SER	142	CA	6.873150
287	1N45	PHE	207	CZ	5.770283
288	1N45	PHE	207	CE2	5.499371
289	1N45	HIS	25	CD2	2.962420
290	1N45	HIS	25	ND1	4.055149
291	1N45	HIS	25	CG	4.092872

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	Coj	re Annihe	Ş.	ى ى
	PDB T	Residue.	Residue	Atom	Distanc
292	1N45	HIS	25	СВ	5.516659
293	1N45	HIS	25	0	6.378513
294	1N45	HIS	25	С	6.673680
295	1N45	HIS	25	CA	6.276680
296	1N45	ASP	140	Ν	6.389011
297	1N45	GLY	139	\mathbf{C}	5.233647
298	1N45	GLY	139	CA	4.866932
299	1N45	GLY	139	Ν	6.158972
300	1N45	LEU	138	Ο	6.569520
301	1N45	LEU	138	С	6.864677
302	1N45	GLY	139	Ο	4.745966
303	1P3T	PHE	181	CZ	6.065263
304	1P3T	PHE	181	CE2	5.883712
305	1P3T	ASP	27	Ν	6.593001
306	1P3T	CYS	113	Ο	6.881310
307	1P3T	VAL	26	CG1	6.716946
308	1P3T	ALA	121	CA	6.862152
309	1P3T	ALA	121	Ν	5.902582
310	1P3T	GLY	120	0	5.088974
311	1P3T	GLY	120	\mathbf{C}	5.008701
312	1P3T	GLY	120	CA	4.368641
313	1P3T	GLY	120	Ν	4.908782
314	1P3T	LEU	119	CB	6.756164
315	1P3T	LEU	119	Ο	6.803831
316	1P3T	ASP	27	CA	6.459872
317	1P3T	LEU	119	\mathbf{C}	6.123518
318	1P3T	LEU	119	CA	6.935993
319	1P3T	ASP	27	OD2	6.047626
320	1P3T	LEU	119	Ν	6.927501
321	1P3T	ASP	27	CG	6.315127
322	1P3T	ASN	118	Ν	6.625279
323	1P3T	SER	117	OG	6.830037
324	1P3T	SER	117	CB	5.457356
325	1P3T	SER	117	0	5.183198
326	1P3T	SER	117	С	5.447026

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	-	code	Annipe	\$	
	Ý	2210/	2210/		~ce
	PDB	Reside	Reside	Atom	Distair
327	1P3T	SER	117	CA	4.802452
328	1P3T	SER	117	Ν	5.469435
329	1P3T	GLY	116	0	5.035610
330	1P3T	GLY	116	\mathbf{C}	5.522926
331	1P3T	GLY	116	СА	6.653130
332	1P3T	HIS	23	NE2	2.123335
333	1P3T	HIS	23 23	CE1	3.040920
334	1P3T	HIS	23	CD2	3 170367
335	1P3T	HIS	23	ND1	4.185915
336	1P3T	HIS	23	CG	4 280040
337	11 9 1 1 P 3 T	HIS	20	CB	4.200040 5 70018/
338	1P3T	HIS	23	0	5 852940
330	11 9 1 1 P 3 T	HIS	20	C	6 366960
340	1P3T	HIS	23	C	6.435673
0.41	100		20	CD	5.000400
341	1P3T	ASP	27	CB	5.923409
342	IQHU 10HU	HIS	213	N	6.818427
343	IQHU 10HU	GLU	225	CG	5.821887
344	IQHU 10HU	ASP	203	0 CD	6.920576
345	IQHU	GLU	225	CD	0.788260
346	$1 \mathrm{QHU}$	GLU	225	CB	5.921903
347	$1 \mathrm{QHU}$	TYR	204	CE2	5.737836
348	$1 \mathrm{QHU}$	HIS	222	NE2	6.644323
349	$1 \mathrm{QHU}$	TYR	204	CD2	5.346169
350	$1 \mathrm{QHU}$	HIS	222	ND1	6.974400
351	$1 \mathrm{QHU}$	HIS	213	NE2	2.160954
352	1QHU	TYR	204	CG	6.385445
353	1QHU	TRP	171	CH2	6.047218
354	$1 \mathrm{QHU}$	TYR	204	0	6.162633
355	$1 \mathrm{QHU}$	TYR	204	\mathbf{C}	6.870284
356	1QHU	TYR	204	CA	6.582455
357	1QHU	HIS	222	CE1	6.602165
358	1QHU	TRP	267	CH2	5.507890
359	1QHU	TRP	267	CZ3	5.473614
360	1QHU	TRP	267	CE3	6.485878
361	1QHU	TRP	267	CZ2	6.483137

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	Co	de Numbe	<u>5</u> -	
\sqrt{N} $\sqrt{e^{E^*}}$ $\sqrt{e^{E^*}}$ $\sqrt{e^{E^*}}$ $\sqrt{e^{E^*}}$ 3621QHUARG214CG6.67727.3631QHUARG214CG6.69405.3641QHUARG214CB6.17579.3651QHUARG214CB6.17579.3661QHUARG214N6.89635.3671QHUSER266O6.68014.3681QHUHIS213CD23.1367.3691QHUHIS213CD23.1367.3701QHUHIS213CG4.25035.3711QHUHIS213CG4.25035.3721QHUHIS213O5.39389.3741QHUHIS265CE13.08462.3751QHUHIS265ND14.2362.99.3761QHUHIS265ND14.2362.99.3771QHUHIS213CA6.48486.3791QHUHIS213CA6.48486.3791QHUHIS213CA6.44846.3801QHUTRP171CZ36.24717.02.3811QHUHIS213CB5.60647.3851QJSHIS213CB5.60647.3841QJSHIS213CB5.60647.3851QJSHIS213CE13.57487.3861QJS <th></th> <th>s ji</th> <th>idue</th> <th>idue</th> <th>T.</th> <th>* 31Ce</th>		s ji	idue	idue	T.	* 31Ce
3621QHUHIS 265 CA 6.67727 363 1QHUARG214CG 6.694053 364 1QHUHIS265NE2 2.16707 365 1QHUARG214CB 6.175793 366 1QHUARG214N 6.89635 367 1QHUSER266O 6.680143 368 1QHUHIS213CE1 3.083653 369 1QHUHIS213CD2 3.133673 370 1QHUHIS213CG 4.250357372 371 1QHUHIS213CB 5.691869373 372 1QHUHIS213CB 5.691869373 373 1QHUHIS265CE1 3.084623375375372 374 1QHUHIS265CD2 3.177233375 376 1QHUHIS265CD2 $3.17723337773737723737737737737737737737737$		BUT	Best	Beer	Ator	Dist
363 1QHU ARG 214 CG 6.694053 364 1QHU HIS 265 NE2 2.167077 365 1QHU ARG 214 CB 6.175793 366 1QHU ARG 214 N 6.896353 367 1QHU SER 266 O 6.680143 368 1QHU HIS 213 CE1 3.083653 369 1QHU HIS 213 CD2 3.133673 370 1QHU HIS 213 CG 4.250353 371 1QHU HIS 213 CB 5.691863 373 1QHU HIS 213 C 3.084623 375 1QHU HIS 265 CD2 3.177233 376 1QHU HIS 265 ND1 4.23629 377 1QHU HIS 213 CA 6.484866 379 1QHU HIS 213 C 6.123380 380 1QHU HIS 213 CG <td>362</td> <td>1QHU</td> <td>HIS</td> <td>265</td> <td>CA</td> <td>6.677274</td>	362	1QHU	HIS	265	CA	6.677274
364 1QHU HIS 265 NE2 2.16707; 365 1QHU ARG 214 CB 6.17579; 366 1QHU ARG 214 N 6.89635; 367 1QHU SER 266 O 6.68014; 368 1QHU HIS 213 CE1 3.08365; 369 1QHU HIS 213 CD2 3.13367; 370 1QHU HIS 213 CG 4.20758; 371 1QHU HIS 213 CB 5.69186; 373 1QHU HIS 213 CB 5.69186; 373 1QHU HIS 213 CB 5.69186; 375 1QHU HIS 265 CD2 3.17723; 376 1QHU HIS 265 CD2 3.17723; 377 1QHU HIS 213 CA 6.48486; 379 1QHU HIS 213 CA 6.48486; 379 1QHU HIS 265 CB<	363	$1 \mathrm{QHU}$	ARG	214	CG	6.694055
3651QHUARG214CB 6.17579 366 1QHUARG214N 6.89635 367 1QHUSER266O 6.680143 368 1QHUHIS213CE1 3.083655 369 1QHUHIS213CD2 3.133673 370 1QHUHIS213CD2 3.133673 370 1QHUHIS213CG 4.250357 372 1QHUHIS213O 5.39389 374 1QHUHIS213O 5.39389 374 1QHUHIS265CE1 3.084622 375 1QHUHIS265CD2 3.177233 376 1QHUHIS265ND1 4.236293 377 1QHUHIS213CA 6.48486 379 1QHUHIS213CA 6.48486 379 1QHUHIS213CA 6.48486 379 1QHUHIS213CA 6.48486 380 1QHUHIS213CB 5.606473 381 1QHUHIS213CB 5.606473 384 1QJSARG214N 6.770443 384 1QJSHIS213CB 5.606473 385 1QJSHIS213CB 6.6534843 390 1QJSHIS213CB 6.6647473 381 1QJSHIS213CB<	364	$1 \mathrm{QHU}$	HIS	265	NE2	2.167072
3661QHUARG214N 6.89635 367 1QHUSER266O 6.68014 368 1QHUHIS213CE1 3.08365 369 1QHUHIS213CD2 3.13367 370 1QHUHIS213ND1 4.20758 371 1QHUHIS213CG 4.25035 372 1QHUHIS213O 5.39389 373 1QHUHIS213O 5.39389 374 1QHUHIS265CE1 3.084622 375 1QHUHIS265CD2 3.177232 376 1QHUHIS265ND1 4.236292 377 1QHUHIS213C 6.484866 379 1QHUHIS213C 6.123362 380 1QHUHIS213C 6.24717023 381 1QHUHIS213C 6.484866 379 1QHUHIS213C 6.484866 379 1QHUHIS213C $6.24717023326223266666473333102363811QHUHIS213CB5.606473236666747333566647333102353851QJSARG214N6.77044433844102136667663348410213666677336666747338563861QJSHIS213CE13.5748773366667733666677333666677333666677333666677333666773367747477474774747474$	365	$1 \mathrm{QHU}$	ARG	214	CB	6.175793
367 1QHU SER 266 O 6.680143 368 1QHU HIS 213 CE1 3.083653 369 1QHU HIS 213 CD2 3.133673 370 1QHU HIS 213 ND1 4.207583 371 1QHU HIS 213 CG 4.250357 372 1QHU HIS 213 CG 4.250357 373 1QHU HIS 213 CG 4.250357 374 1QHU HIS 213 O 5.39389- 374 1QHU HIS 265 CE1 3.084629 375 1QHU HIS 265 CD2 3.17723 376 1QHU HIS 265 ND1 4.23629 377 1QHU TYR 204 CB 6.59198 378 1QHU HIS 213 CA 6.484866 379 1QHU HIS 265 CG 4.301112 381 1QHU HIS 265 CB <td>366</td> <td>$1 \mathrm{QHU}$</td> <td>ARG</td> <td>214</td> <td>Ν</td> <td>6.896354</td>	366	$1 \mathrm{QHU}$	ARG	214	Ν	6.896354
368 1QHU HIS 213 CE1 3.083653 369 1QHU HIS 213 CD2 3.133673 370 1QHU HIS 213 ND1 4.207583 371 1QHU HIS 213 CG 4.250357 372 1QHU HIS 213 CB 5.691863 373 1QHU HIS 213 O 5.39389 374 1QHU HIS 265 CE1 3.084622 375 1QHU HIS 265 CD2 3.17723 376 1QHU HIS 265 ND1 4.236293 377 1QHU HIS 265 ND1 4.236293 378 1QHU HIS 213 CA 6.484860 379 1QHU HIS 213 CA 6.484860 380 1QHU HIS 213 CA 6.484860 381 1QHU HIS 265 CG 4.201716 381 1QHU HIS 265 CB	367	$1 \mathrm{QHU}$	SER	266	Ο	6.680148
369 1QHU HIS 213 CD2 3.133673 370 1QHU HIS 213 ND1 4.207583 371 1QHU HIS 213 CG 4.250357 372 1QHU HIS 213 CB 5.691863 373 1QHU HIS 213 O 5.39389 374 1QHU HIS 265 CE1 3.084622 375 1QHU HIS 265 CD2 3.17723 376 1QHU HIS 265 ND1 4.236293 377 1QHU TYR 204 CB 6.591988 378 1QHU HIS 213 CA 6.484860 379 1QHU HIS 213 CA 6.484860 379 1QHU HIS 213 C 6.123380 380 1QHU HIS 265 CG 4.301117 381 1QHU HIS 265 CG 4.301117 382 1QHU HIS 265 CG <td>368</td> <td>$1 \mathrm{QHU}$</td> <td>HIS</td> <td>213</td> <td>CE1</td> <td>3.083658</td>	368	$1 \mathrm{QHU}$	HIS	213	CE1	3.083658
370 1QHU HIS 213 ND1 4.20758: 371 1QHU HIS 213 CG 4.25035' 372 1QHU HIS 213 CB 5.69186' 373 1QHU HIS 213 O 5.39389' 374 1QHU HIS 265 CE1 3.08462' 375 1QHU HIS 265 CD2 3.17723' 376 1QHU HIS 265 ND1 4.23629' 377 1QHU TYR 204 CB 6.59198' 378 1QHU HIS 213 CA 6.48486' 379 1QHU HIS 213 CA 6.48486' 379 1QHU HIS 213 CA 6.48486' 380 1QHU TRP 171 CZ3 6.24717' 381 1QHU HIS 265 CG 4.30111' 382 1QHU HIS 265 CB 5.75704' 383 1QJS HIS 213 CE	369	$1 \mathrm{QHU}$	HIS	213	CD2	3.133678
3711QHUHIS 213 CG $4.25035'$ 372 1QHUHIS 213 CB 5.691863 373 1QHUHIS 213 O 5.393894 374 1QHUHIS 265 CE1 3.084623 375 1QHUHIS 265 CD2 3.177233 376 1QHUHIS 265 CD2 3.177233 376 1QHUHIS 265 CD2 3.177233 377 1QHUTYR 204 CB 6.591983 378 1QHUHIS 213 CA 6.484866 379 1QHUHIS 213 C 6.123380 380 1QHUTRP171CZ3 6.247176 381 1QHUHIS 265 CB 5.757042 383 1QJSARG 214 N 6.770449 384 1QJSHIS 213 CB 5.606474 385 1QJSHIS 213 CB 5.606474 386 1QJSHIS 213 CE1 3.574877 387 1QJSTYR 204 CD1 5.451236 388 1QJSTYR 204 CB 6.449472 389 1QJSTYR 204 CB 6.653444 390 1QJSTYR 204 CB 6.653444 391 1QJSTRP 268 CH2 5.757966 394 1QJSHIS 213 CD2 3.040296	370	$1 \mathrm{QHU}$	HIS	213	ND1	4.207582
372 1QHU HIS 213 CB 5.691863 373 1QHU HIS 213 O 5.393894 374 1QHU HIS 265 CE1 3.084623 375 1QHU HIS 265 CD2 3.177233 376 1QHU HIS 265 ND1 4.236293 377 1QHU TYR 204 CB 6.591983 378 1QHU HIS 213 CA 6.484864 379 1QHU HIS 213 C 6.123380 380 1QHU TRP 171 CZ3 6.247170 381 1QHU HIS 265 CG 4.301112 382 1QHU HIS 265 CB 5.757042 383 1QJS ARG 214 N 6.770443 384 1QJS HIS 213 CE1 3.57487 385 1QJS HIS 213 CE1 3.57487 386 1QJS HIS 213 CE1 </td <td>371</td> <td>$1 \mathrm{QHU}$</td> <td>HIS</td> <td>213</td> <td>CG</td> <td>4.250357</td>	371	$1 \mathrm{QHU}$	HIS	213	CG	4.250357
3731QHUHIS213O5.39389 374 1QHUHIS265CE1 3.084623 375 1QHUHIS265CD2 3.177233 376 1QHUHIS265ND1 4.236293 377 1QHUTYR204CB 6.591983 378 1QHUHIS213CA 6.484866 379 1QHUHIS213C 6.123380 380 1QHUTRP171CZ3 6.247170 381 1QHUHIS265CG 4.301112 382 1QHUHIS265CB 5.757042 383 1QJSARG214N 6.770443 384 1QJSHIS213CE1 3.574877 385 1QJSHIS213CE1 3.574877 386 1QJSHIS213CE1 3.574877 387 1QJSTYR204CG 6.449477 388 1QJSTYR204CG 6.449477 389 1QJSTYR204CB 6.418399 390 1QJSTYR204C 6.653444 392 1QJSTRP268CH2 5.757963 393 1QJSTRP268CH2 5.757963 394 1QJSHIS213ND1 4.572233 396 1QJSASP203O 6.878437	372	$1 \mathrm{QHU}$	HIS	213	CB	5.691865
3741QHUHIS265CE1 3.084623 375 1QHUHIS265CD2 3.177233 376 1QHUHIS265ND1 4.236293 377 1QHUTYR204CB 6.591983 378 1QHUHIS213CA 6.484860 379 1QHUHIS213C 6.123380 380 1QHUTRP171CZ3 6.247170 381 1QHUHIS265CG 4.301112 382 1QHUHIS265CB 5.757042 383 1QJSARG214N 6.770443 384 1QJSHIS213CB 5.606477 385 1QJSHIS213CB 5.606473 386 1QJSHIS213CE1 3.574877 387 1QJSTYR204CD1 5.451236 390 1QJSTYR204CB 6.418396 391 1QJSTYR204CB 6.653444 392 1QJSTRP268CH2 5.757966 393 1QJSTRP268CH2 5.757966 394 1QJSHIS213ND1 4.57223 396 1QJSASP203O 6.87843	373	$1 \mathrm{QHU}$	HIS	213	0	5.393894
375 1QHU HIS 265 CD2 3.177233 376 1QHU HIS 265 ND1 4.236293 377 1QHU TYR 204 CB 6.591983 378 1QHU HIS 213 CA 6.484860 379 1QHU HIS 213 C 6.123380 380 1QHU TRP 171 CZ3 6.247170 381 1QHU HIS 265 CG 4.301112 382 1QHU HIS 265 CB 5.757042 383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 CB 5.606479 384 1QJS HIS 213 NE2 2.371644 386 1QJS HIS 213 NE2 2.371644 387 1QJS TYR 204 CG 6.418390 390 1QJS TYR 204 CB<	374	$1 \mathrm{QHU}$	HIS	265	CE1	3.084628
376 1QHU HIS 265 ND1 4.236299 377 1QHU TYR 204 CB 6.591983 378 1QHU HIS 213 CA 6.484860 379 1QHU HIS 213 C 6.123380 380 1QHU TRP 171 CZ3 6.247170 381 1QHU HIS 265 CG 4.301112 382 1QHU HIS 265 CG 4.301112 383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 CB 5.606479 386 1QJS HIS 213 NE2 2.371644 386 1QJS HIS 213 NE2 2.371644 387 1QJS TYR 204 CD1 5.451236 388 1QJS TYR 204 CB 6.418399 390 1QJS TYR 204 CB<	375	$1 \mathrm{QHU}$	HIS	265	CD2	3.177235
377 1QHU TYR 204 CB 6.591988 378 1QHU HIS 213 CA 6.484866 379 1QHU HIS 213 C 6.123386 380 1QHU TRP 171 CZ3 6.247176 381 1QHU TRP 171 CZ3 6.247176 381 1QHU HIS 265 CG 4.301117 382 1QHU HIS 265 CB 5.757042 383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 CB 5.606479 386 1QJS HIS 213 CE1 3.574877 387 1QJS TYR 204 CD1 5.451236 388 1QJS TYR 204 CG 6.418390 390 1QJS TYR 204 CB 6.418396 391 1QJS TYR 204 C <td>376</td> <td>1QHU</td> <td>HIS</td> <td>265</td> <td>ND1</td> <td>4.236295</td>	376	1QHU	HIS	265	ND1	4.236295
378 1QHU HIS 213 CA 6.484860 379 1QHU HIS 213 C 6.123380 380 1QHU TRP 171 CZ3 6.247170 381 1QHU HIS 265 CG 4.301117 382 1QHU HIS 265 CB 5.757042 383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 CB 5.606479 386 1QJS HIS 213 CB 5.606479 387 1QJS HIS 213 CE1 3.574877 386 1QJS TYR 204 CD1 5.451236 388 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.985077 391 1QJS TYR 204 C <td>377</td> <td>1QHU</td> <td>TYR</td> <td>204</td> <td>CB</td> <td>6.591988</td>	377	1QHU	TYR	204	CB	6.591988
379 1QHU HIS 213 C 6.123380 380 1QHU TRP 171 CZ3 6.247170 381 1QHU HIS 265 CG 4.301117 382 1QHU HIS 265 CB 5.757042 383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 NE2 2.371643 386 1QJS HIS 213 NE2 2.371643 386 1QJS HIS 213 CE1 3.57487 387 1QJS TYR 204 CD1 5.451236 388 1QJS TYR 204 CB 6.418396 390 1QJS TYR 204 CB 6.598507 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CH2<	378	1QHU	HIS	213	CA	6.484866
380 1QHU TRP 171 CZ3 6.247170 381 1QHU HIS 265 CG 4.301111 382 1QHU HIS 265 CB 5.757042 383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 NE2 2.371649 386 1QJS HIS 213 NE2 2.371649 387 1QJS TYR 204 CD1 5.451236 388 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CB 6.418396 390 1QJS HIS 266 CB 5.98507 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CH2 5.757963 394 1QJS HIS 213 CD2	379	1QHU	HIS	213	С	6.123380
381 1QHU HIS 265 CG 4.301113 382 1QHU HIS 265 CB 5.757043 383 1QJS ARG 214 N 6.770443 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 NE2 2.371643 386 1QJS HIS 213 NE2 2.371643 386 1QJS HIS 213 CE1 3.57487 387 1QJS TYR 204 CD1 5.451236 388 1QJS TYR 204 CG 6.449473 389 1QJS TYR 204 CB 6.418390 390 1QJS TYR 204 C 6.6534443 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 N	380	$1 \mathrm{QHU}$	TRP	171	CZ3	6.247170
382 1QHU HIS 265 CB 5.757043 383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 CB 5.606479 386 1QJS HIS 213 NE2 2.371649 386 1QJS HIS 213 CE1 3.57487 387 1QJS TYR 204 CD1 5.451230 388 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.98507 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 ND1 4.572233 395 1QJS HIS 213 ND1<	381	1QHU	HIS	265	CG	4.301112
383 1QJS ARG 214 N 6.770449 384 1QJS HIS 213 CB 5.606479 385 1QJS HIS 213 NE2 2.371649 386 1QJS HIS 213 NE2 2.371649 386 1QJS HIS 213 CE1 3.574877 387 1QJS TYR 204 CD1 5.451236 388 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.985077 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 ND1 4.572233 395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203	382	1QHU	HIS	265	CB	5.757042
3841QJSHIS213CB5.6064793851QJSHIS213NE22.3716493861QJSHIS213CE13.57487'3871QJSTYR204CD15.4512363881QJSTYR204CG6.4494723891QJSTYR204CB6.4183963901QJSHIS266CB5.9850753911QJSTYR204C6.6534483921QJSTRP268CH25.7579633931QJSTRP268CZ35.6466333941QJSHIS213CD23.0402963951QJSHIS213ND14.5722383961QJSASP203O6.878433	383	1QJS	ARG	214	Ν	6.770449
385 1QJS HIS 213 NE2 2.371648 386 1QJS HIS 213 CE1 3.57487' 387 1QJS TYR 204 CD1 5.451230 388 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.985077 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203 O 6.878437	384	$1 \mathrm{QJS}$	HIS	213	CB	5.606479
386 1QJS HIS 213 CE1 3.57487 387 1QJS TYR 204 CD1 5.451230 388 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CG 6.449472 389 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.985072 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203 O 6.878437	385	$1 \mathrm{QJS}$	HIS	213	NE2	2.371645
387 1QJS TYR 204 CD1 5.451230 388 1QJS TYR 204 CG 6.449475 389 1QJS TYR 204 CB 6.418390 390 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.985075 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757965 393 1QJS TRP 268 CZ3 5.646635 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572235 396 1QJS ASP 203 O 6.878435	386	$1 \mathrm{QJS}$	HIS	213	CE1	3.574877
388 1QJS TYR 204 CG 6.449475 389 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.985075 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757965 393 1QJS TRP 268 CZ3 5.646635 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572235 396 1QJS ASP 203 O 6.878435	387	1QJS	TYR	204	CD1	5.451236
389 1QJS TYR 204 CB 6.418390 390 1QJS HIS 266 CB 5.98507' 391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203 O 6.878433	388	$1 \mathrm{QJS}$	TYR	204	CG	6.449472
3901QJSHIS266CB5.98507'3911QJSTYR204C6.6534483921QJSTRP268CH25.7579633931QJSTRP268CZ35.6466333941QJSHIS213CD23.0402903951QJSHIS213ND14.5722333961QJSASP203O6.878433	389	$1 \mathrm{QJS}$	TYR	204	CB	6.418390
391 1QJS TYR 204 C 6.653448 392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203 O 6.878433	390	$1 \mathrm{QJS}$	HIS	266	CB	5.985077
392 1QJS TRP 268 CH2 5.757963 393 1QJS TRP 268 CZ3 5.646633 394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203 O 6.878433	391	1QJS	TYR	204	С	6.653448
3931QJSTRP268CZ35.6466333941QJSHIS213CD23.0402903951QJSHIS213ND14.5722333961QJSASP203O6.878433	392	1QJS	TRP	268	CH2	5.757963
394 1QJS HIS 213 CD2 3.040290 395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203 O 6.878433	393	$1 \mathrm{QJS}$	TRP	268	CZ3	5.646631
395 1QJS HIS 213 ND1 4.572233 396 1QJS ASP 203 O 6.878433	394	$1 \mathrm{QJS}$	HIS	213	CD2	3.040290
396 1QJS ASP 203 O 6.878433	395	$1 \mathrm{QJS}$	HIS	213	ND1	4.572235
	396	$1 \mathrm{QJS}$	ASP	203	0	6.878437

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2	Cos	le Aunite	<u>5</u>	
	PDB ID	Residue	Residue	Atom	Distance
397 398 399 400	1QJS 1QJS 1QJS 1QJS 1QJS	HIS TYR HIS HIS	213 204 266 266	O CE1 NE2 CE1	$5.997544 \\ 5.966506 \\ 2.439885 \\ 3.445671$
401 402 403 404 405	$\begin{array}{c} 1 \mathrm{QJS} \\ 1 \mathrm{QJS} \end{array}$	HIS ARG HIS GLU HIS	266 214 266 226 266	CD2 NH2 CG OE1 CA	$\begin{array}{c} 3.419325\\ 6.999397\\ 4.605278\\ 6.866794\\ 6.897887\end{array}$
406 407 408 409 410	$\begin{array}{c} 1 \mathrm{QJS} \\ 1 \mathrm{QJS} \end{array}$	ARG HIS HIS ARG ARG	214 213 213 214 214	NH1 C CA CD CZ	5.943540 6.229975 6.547120 5.356812 6.175478
411 412 413 414 415	$\begin{array}{c} 1 \mathrm{QJS} \\ 1 \mathrm{QJS} \end{array}$	ARG TYR HIS SER GLU	214 204 266 267 226	NE O ND1 O CD	$5.917672 \\ 6.252275 \\ 4.597532 \\ 6.730283 \\ 6.990226$
416 417 418 419 420	1QJS 1QJS 1QJS 1QJS 1QJS 1QJS	GLU GLU HIS ARG TYR	226 226 213 214 204	CG CB CG CG CA	$\begin{array}{c} 6.055635\\ 5.949390\\ 4.330243\\ 6.580984\\ 6.388720\end{array}$
421 422 423 424 425	1QJS 1QJS 1QJS 1QJS 1QJS 1SI8	TRP TRP TRP TRP VAL	268 171 171 268 53	CZ2 CH2 CZ3 CE3 CB	$\begin{array}{c} 6.847412 \\ 6.207239 \\ 6.216160 \\ 6.670834 \\ 5.947069 \end{array}$
426 427 428 429 430	1SI8 1SI8 1SI8 1SI8 1SI8	РНЕ РНЕ РНЕ РНЕ РНЕ	140 140 140 140 140	CZ CE2 CE1 CD2 CD1	$\begin{array}{c} 4.567970\\ 5.104909\\ 5.129727\\ 6.057751\\ 6.083801 \end{array}$
431	1SI8	$\rm PHE$	140	CG	6.508549

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		<u>ر</u>	de Aunibe	Ş.	
	Þ	me/	nie /		nce
	PDB	Reside	Reside	Atom	Distar
432	1SI8	ARG	333	CA	6.916515
433	1SI 8	ASN	127	ND2	6.475579
434	1SI8	ASN	127	OD1	6.570388
435	1SI 8	PRO	315	CD	6.722802
436	1SI 8	PRO	315	CG	6.356640
437	1SI8	VAL	125	CG1	5.290777
438	1SI8	VAL	125	CB	6.387496
439	1SI8	VAL	125	Ο	6.372424
440	1SI8	HIS	54	CD2	4.705726
441	1SI8	TYR	337	OH	1.764858
442	1SI8	TYR	337	CE2	3.708765
443	1SI8	TYR	337	CE1	3.793786
444	1SI8	TYR	337	CD2	5.002530
445	1SI8	ASN	127	CG	6.954157
446	1SI8	HIS	54	CB	6.658850
447	1SI8	TYR	337	CG	5.585404
448	1SI8	TYR	337	CZ	2.916787
449	1SI8	TYR	337	CD1	5.063792
450	1SI8	VAL	53	CG2	4.708814
451	1SI8	VAL	53	CG1	6.646728
452	1SI8	VAL	53	Ο	6.896312
453	1SI8	HIS	54	NE2	4.761949
454	1SI8	ARG	333	CG	5.432293
455	1SI8	HIS	54	CE1	5.832974
456	1SI8	HIS	54	CG	5.792320
457	1SI8	PHE	132	CZ	6.457172
458	1SI8	PHE	132	CE1	6.649313
459	1SI8	VAL	53	\mathbf{C}	6.995423
460	1SI8	HIS	54	ND1	6.381505
461	1SI8	ARG	333	NH2	4.088012
462	1SI 8	ARG	333	NH1	5.699736
463	1SI 8	ARG	333	CZ	4.501158
464	1SI 8	ARG	333	NE	4.109676
465	1SI8	ARG	333	CD	5.130376
466	1SI8	ARG	333	CB	6.103225

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		රං	le Villige	\$	
	JD ID	Alle	, Alle	$\mathbf{\hat{\Delta}}$	me
	5Dp.	Resit	Resit	Atom	Dista
467	1SY2	HIS	59	NE2	1.991131
468	1SY2	HIS	59	CE1	2.969617
469	1SY2	HIS	59	CD2	3.008230
470	1SY2	PHE	68	CE1	6.731105
471	1SY2	HIS	59	ND1	4.093496
472	1SY2	HIS	59	CG	4.139204
473	1SY2	VAL	36	CG1	6.025207
474	1SY2	VAL	36	CB	6.934406
475	1SY2	PHE	68	CZ	5.479745
476	1SY2	PHE	68	CE2	5.463865
477	1SY2	PHE	68	CD2	6.718779
478	1SY2	TYR	58	0	6.964531
479	1SY2	LEU	57	CD1	6.145372
480	1SY2	ALA	42	CB	6.006055
481	1SY2	LEU	133	CD2	4.771642
482	1SY2	LEU	133	CD1	6.971913
483	1SY2	LEU	133	CG	6.296579
484	1SY2	LEU	133	CB	6.926720
485	1SY2	TYR	40	CE1	5.529416
486	1SY2	TYR	40	CD1	6.143980
487	1SY2	THR	121	CG2	6.333312
488	1SY2	HIS	59	CA	6.572801
489	1SY2	TYR	40	CZ	6.015462
490	1SY2	TYR	40	OH	5.862889
491	1SY2	LEU	123	CD2	5.102667
492	1SY2	HIS	59	CB	5.543230
493	1SY2	LEU	123	CD1	6.319238
494	1SY2	LEU	123	CG	6.093997
495	1SY2	LEU	123	CB	6.095758
496	1U9U	HIS	39	CG	4.206256
497	1U9U	LEU	46	CG	6.187550
498	1U9U	TYR	58	OH	6.699568
499	1U9U	TYR	58	CZ	6.326789
500	1U9U	GLY	42	Ν	6.680137
501	1U9U	VAL	45	CG2	6.942157

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	ço	de Aunife	5	
	PDB ID	Residue	Residue	Atom	Distance
502	1U9U	VAL	45	CG1	6.058232
503	1U9U	TYR	58	CD1	5.273249
504 FOF	1090	TYR	58	CG	6.538044
000	1090	GLY	41	0	0.043878
506	1U9U	HIS	39	0	6.864918
507	1090	TYR	58	0	6.735663
508	1090	TYR	58	CA	6.913788
509	1090	HIS	39	C	6.191801 C 112410
510	1090	GLY	41	C	0.113410
511	1U9U	GLY	41	CA	5.128111
512	1U9U	HIS	39	CA	6.111432
513	1U9U	GLY	41	N	5.006643
514	1090	GLY	42	0	6.699127
515	1090	PRO	40	CD	5.614395
516	1U9U	PRO	40	CG	6.488790
517	1U9U	PRO	40	CB	6.335580
518	1U9U	PRO	40	С	6.123416
519	1U9U	PRO	40	CA	6.448076
520	1U9U	PRO	40	Ν	5.886755
521	1U9U	HIS	39	NE2	2.043206
522	1U9U	HIS	39	CE1	3.048365
523	1U9U	TYR	58	CE1	5.142585
524	1U9U	ALA	67	CB	6.016697
525	1U9U	HIS	39	ND1	4.185334
526	1U9U	HIS	39	CB	5.603902
527	1U9U	HIS	63	NE2	2.014515
528	1U9U	HIS	63	CE1	3.015075
529	1U9U	HIS	63	CD2	3.029380
530	1U9U	HIS	63	ND1	4.158058
531	1U9U	HIS	63	CG	4.183993
532	1U9U	HIS	63	CB	5.583220
533	1U9U	HIS	63	CA	6.401253
534	1U9U	PHE	35	CZ	5.951020
535	1U9U	PHE	35	CE1	5.597399
536	1U9U	PHE	35	CD1	6.735596

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	ço	le Aunife	5	2
	PDB IV	Residue	Residue/	Atom	Distance
537	1U9U	VAL	61	CG2	5.482450
538	1U9U	VAL	61	CG1	6.660130
539	1U9U	HIS	39	CD2	3.048436
540	1U9U	VAL	61	CB	6.348508
541	1U9U	HIS	63	Ν	6.957491
542	1U9U	LEU	46	CD2	5.296413
543	1U9U	LEU	46	CD1	6.392325
544	1VGI	ASP	140	Ν	6.566393
545	1VGI	GLY	139	Ο	4.909939
546	1VGI	GLY	139	С	5.283546
547	1VGI	GLY	139	CA	4.648608
548	1VGI	GLY	139	Ν	5.779788
549	1VGI	LEU	138	\mathbf{C}	6.281721
550	1VGI	THR	135	0	6.883314
551	1VGI	GLU	29	OE2	6.243035
552	1VGI	GLU	29	OE1	5.985395
553	1VGI	GLU	29	CD	6.086993
554	1VGI	GLU	29	CG	6.516177
555	1VGI	GLU	29	CB	5.743143
556	1VGI	LEU	138	Ο	5.939267
557	1VGI	GLU	29	CA	6.608512
558	1VGI	GLU	29	Ν	6.775782
559	1VGI	PHE	207	CD2	6.972948
560	1VGI	PHE	207	CE2	5.769644
561	1VGI	PHE	207	CZ	5.974394
562	1VGI	GLY	144	Ν	5.974807
563	1VGI	GLY	143	Ο	6.628912
564	1VGI	GLY	143	С	5.710274
565	1VGI	GLY	143	CA	4.511340
566	1VGI	GLY	143	Ν	4.268353
567	1VGI	SER	142	OG	5.504225
568	1VGI	SER	142	CB	4.695014
569	1VGI	SER	142	0	6.489063
570	1VGI	SER	142	\mathbf{C}	5.437356
571	1VGI	SER	142	CA	5.720043

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)
	Ð	çõ	de Anno	5	2
	808 Jr	Residue	Residue	Atom	Distance
572	1VGI	SER	142	N	6.355931
573	1VGI	HIS	25	NE2	2.129611
574 575		HIS	25	CEI	3.138380
919	IVGI	ПІЗ	20	CD2	3.080733
576	1VGI	HIS	25	ND1	4.235989
577	1VGI	HIS	25	CG	4.243468
578	1VGI	HIS	25	CB	5.650238
579	1VGI	HIS	25	0 C	6.255406
580	IVGI	HIS	25	C	6.671689
581	1VGI	HIS	25	CA	6.410085
582	1ZVI	TRP	409	NE1	4.390030
583	1ZVI	TRP	409	CD2	6.307480
584	1ZVI	TRP	409	CD1	5.061980
585	1ZVI	TRP	409	CG	6.187796
586	1ZVI	ALA	412	0	6.765352
587	1ZVI	GLY	417	0	5.991773
588	1ZVI	ALA	412	CB	6.197408
589	1ZVI	TRP	409	CH2	6.817691
590	1ZVI	GLY	586	Ν	6.997972
591	1ZVI	TRP	409	CZ2	5.585668
592	1ZVI	TRP	409	CE2	5.271278
593	1ZVI	PHE	584	CD1	6.145291
594	1ZVI	GLY	417	CA	5.225372
595	1ZVI	ARG	418	CG	6.178065
596	1ZVI	VAL	416	С	5.918608
597	1ZVI	ARG	418	CA	6.675410
598	1ZVI	ARG	418	Ν	5.925158
599	1ZVI	GLY	417	С	5.585365
600	1ZVI	GLY	417	Ν	4.817420
601	1ZVI	VAL	416	CG1	6.132313
602	1ZVI	VAL	416	CB	6.790595
603	1ZVI	GLU	592	OE1	6.601349
604	1ZVI	VAL	416	CA	6.037081
605	1ZVI	TRP	587	Ο	6.843603
606	1ZVI	CYS	415	SG	2.308670

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	B P	idhe C	de idue Munit	et M	allce	
	2Dr	Bos,	$\mathcal{B}_{\mathcal{C}_{\mathcal{D}}}$	Pro.	Dist	
607	1ZVI	CYS	415	СВ	3.198440	
608	1ZVI	CYS	415	Ο	5.568409	
609	1ZVI	CYS	415	\mathbf{C}	4.775958	
610	1ZVI	CYS	415	CA	4.044635	
611	1ZVI	CYS	415	Ν	5.194890	
612	1ZVI	VAL	416	Ν	4.925378	
613	1ZVI	ARG	414	Ο	5.732163	
614	1ZVI	ARG	414	\mathbf{C}	5.866689	
615	1ZVI	PHE	584	CZ	6.329761	
616	1ZVI	PHE	584	CE1	5.554874	
617	2BHJ	TRP	188	CZ2	6.222844	
618	2BHJ	TRP	188	CE2	5.893418	
619	2BHJ	TRP	188	NE1	5.125246	
620	2BHJ	PHE	363	CE1	5.474852	
621	2BHJ	TRP	188	CD2	6.779083	
622	2BHJ	TRP	188	CD1	5.641795	
623	2BHJ	TRP	188	CG	6.631906	
626	2BHJ	ILE	195	CA	6.453869	
630	2BHJ	ARG	197	CG	6.260527	
635	2BHJ	TRP	366	0	6.764735	
637	2BHJ	GLY	365	\mathbf{C}	6.979700	
638	2BHJ	GLY	365	CA	6.306240	
639	2BHJ	GLY	365	N	6.566821	
640	2BHJ	VAL	346	CG2	6.643571	
641	2BHJ	ARG	197	CA	6.757059	
642	2BHJ	ARG	193	0	5.497250	
643	2BHJ	ARG	197	N	5.646104	
644	2BHJ	ARG	193	С	5.992947	
645	2BHJ	GLY	196	С	5.839840	
646	2BHJ	GLY	196	CA	4.990296	
647	2BHJ	GLY	196	N	4.924861	
648	2BHJ	PHE	363	CZ	6.572774	
649	2BHJ	ILE	195	CG1	6.874262	
650	2BHJ	GLY	196	0	6.913416	
651	2BHJ	PHE	363	CD1	5.892929	

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	Ċ	de Numbe	5	
	PDB ID	Residue	Residue	Atom	Distance
652	2BHJ	ILE	195	С	6.137234
653	2BHJ	ALA	191	CB	6.261711
655	2BHJ	ILE	195	N G	5.399846
656	2BHJ	ASN	364	C	6.955669
657	2BHJ	CYS	194	SG	2.550330
658	2BHJ	CYS	194	CB	3.455701
659	2BHJ	CYS	194	0	5.801798
660	2BHJ	CYS	194	С	5.116600
661	2BHJ	CYS	194	CA	4.401892
662	2BHJ	CYS	194	Ν	5.598660
663	2CJ0	PRO	30	CA	6.413160
664	2CJ0	PRO	30	Ν	5.305511
665	2CJ0	PRO	28	0	6.087495
666	2CJ0	LEU	32	CG	5.201324
667	2CJ0	PHE	57	CZ	5.997218
668	2CJ0	PHE	57	CE2	6.943680
669	2CJ0	PHE	57	CE1	6.513037
670	2CJ0	PRO	28	С	6.167848
671	2CJ0	LEU	32	CB	6.048838
672	2CJ0	CYS	29	SG	2.332979
673	2CJ0	PHE	186	CZ	5.733194
674	2CJ0	PHE	186	CE2	4.498737
675	2CJ0	PHE	186	CE1	6.809006
676	2CJ0	PHE	186	CD2	4.600610
677	2CJ0	PHE	186	CD1	6.871748
678	2CJ0	PHE	186	CG	5.885035
679	2CJ0	PHE	186	CB	6.436140
680	2CJ0	ALA	71	CB	6.531120
681	2CJ0	GLU	183	CG	5.000890
682	2CJ0	CYS	29	0	5.828148
683	2CJ0	PHE	103	CZ	5.720504
684	2CJ0	PHE	103	CE2	6.636227
685	2CJ0	PHE	103	CE1	5.717665
686	2CJ0	PHE	103	CD1	6.657126
687	2CJ0	GLU	183	CB	6.148012

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	Co	de Numbe	5	
	808 D	Residue	Residue	Atom	Distance
688	2CJ0	LEU	32	CD2	6.182563
689	2CJ0	LEU	32	CD1	5.205139
690	2CJ0	GLU	183	OE2	4.813794
691	2CJ0	LEU	32	Ν	5.473763
692	2CJ0	GLU	183	OE1	6.305254
693	2CJ0	TRP	213	CZ2	6.764355
694	2CJ0	GLU	183	CD	5.296878
695	2CJ0	LEU	32	CA	6.431553
696	2CJ0	ALA	31	CB	4.801695
697	2CJ0	GLU	183	CA	6.731475
698	2CJ0	ALA	31	\mathbf{C}	6.117251
699	2CJ0	ALA	31	CA	5.615654
700	2CJ0	ALA	31	Ν	5.228885
701	2CJ0	PRO	30	CD	4.998710
703	2CJ0	PRO	30	CG	5.851687
704	2CJ0	PRO	30	CB	6.887230
706	2CJ0	PRO	30	С	6.306888
707	2CJ0	CYS	29	CB	3.353759
709	2CJ0	CYS	29	С	5.082226
710	2CJ0	CYS	29	CA	4.298322
711	2CJ0	CYS	29	Ν	5.449996
713	$2\mathrm{CN4}$	TYR	137	CE1	5.999989
714	$2\mathrm{CN4}$	LEU	77	CD1	5.872843
715	$2\mathrm{CN4}$	LEU	77	Ο	6.708273
716	$2\mathrm{CN4}$	TYR	75	CD1	4.937744
717	$2\mathrm{CN4}$	LEU	77	\mathbf{C}	6.957343
718	$2\mathrm{CN4}$	LEU	77	CA	6.369264
719	$2\mathrm{CN4}$	LEU	77	Ν	6.836199
720	$2\mathrm{CN4}$	MET	140	SD	6.431033
721	$2\mathrm{CN4}$	TYR	75	OH	1.967570
722	$2\mathrm{CN4}$	TYR	75	CE2	3.773859
723	$2\mathrm{CN4}$	TYR	75	CG	5.495449
724	$2\mathrm{CN4}$	TYR	75	CB	6.949941
725	$2\mathrm{CN4}$	TYR	75	CE1	3.696255
726	$2\mathrm{CN4}$	THR	84	Ν	6.804573

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2	Ċ	de Numbe	Number	
	PDB ID	Residue	Residue	Atom	Distance
727	2CN4	HIS	83	NE2	5.663518
728	$2\mathrm{CN4}$	HIS	83	CE1	4.646133
729	$2\mathrm{CN4}$	HIS	83	CD2	5.660304
730	$2\mathrm{CN4}$	HIS	83	ND1	3.832308
731	$2\mathrm{CN4}$	HIS	83	CG	4.590615
732	$2\mathrm{CN4}$	HIS	83	Ο	5.774314
733	$2\mathrm{CN4}$	HIS	83	\mathbf{C}	5.865981
734	$2\mathrm{CN4}$	HIS	83	CA	5.304336
735	$2\mathrm{CN4}$	HIS	83	Ν	6.539553
736	$2\mathrm{CN4}$	TYR	75	CD2	4.987756
737	$2\mathrm{CN4}$	TYR	137	CD1	6.285768
738	$2\mathrm{CN4}$	MET	140	CE	5.201521
739	$2\mathrm{CN4}$	TYR	55	OH	6.806239
740	$2\mathrm{CN4}$	HIS	83	CB	4.641684
741	$2\mathrm{CN4}$	TYR	75	CZ	2.951862
742	2CPO	PHE	103	CD1	6.975511
743	2CPO	GLU	183	OE2	4.939676
744	2CPO	GLU	183	OE1	6.335940
745	2CPO	GLU	183	CD	5.349221
746	2CPO	GLU	183	CG	5.054924
747	2CPO	GLU	183	CB	6.268234
748	2CPO	PHE	186	CE2	4.603752
749	2CPO	GLU	183	CA	6.849042
750	2CPO	PHE	186	CE1	6.837423
751	2CPO	PRO	30	CD	5.233183
752	2CPO	PRO	30	CG	5.856242
753	2CPO	PRO	30	CB	6.905368
754	2CPO	ALA	71	CB	6.539227
755	2CPO	PHE	57	CZ	6.204651
756	2CPO	PHE	57	CE1	6.743175
757	2CPO	PRO	30	С	6.340386
758	2CPO	PRO	30	CA	6.422284
759	2CPO	LEU	32	CD1	5.464368
760	2CPO	LEU	32	CD2	6.378116
761	2CPO	LEU	32	CG	5.367063

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	Çoj	te Annie	Ş.	C
	PDB II	Residue/	Residue	Atom	Distance
762	2CPO	LEU	32	СВ	6.113132
763	2CPO	LEU	32	CA	6.537572
764	2CPO	ALA	31	CB	4.859749
765	2CPO	ALA	31	С	6.209249
766	2CPO	ALA	31	CA	5.676009
767	2CPO	ALA	31	Ν	5.275484
768	2CPO	PRO	30	Ν	5.345663
769	2CPO	CYS	29	SG	2.280053
770	2CPO	CYS	29	CB	3.456969
771	2CPO	CYS	29	0	5.849326
772	2CPO	CYS	29	С	5.117841
773	2CPO	CYS	29	CA	4.399908
774	2CPO	CYS	29	Ν	5.557198
775	2CPO	LEU	32	Ν	5.618095
776	2CPO	PHE	186	CZ	5.795715
777	2CPO	PRO	28	0	5.903420
778	2CPO	PRO	28	\mathbf{C}	6.132974
779	2CPO	PHE	186	CD2	4.688355
780	2CPO	PHE	186	CD1	6.888712
781	2CPO	PHE	186	CG	5.928563
782	2CPO	PHE	186	CB	6.495107
783	2CPO	PHE	103	CZ	5.900386
784	2CPO	PHE	103	CE2	6.595274
785	2CPO	PHE	103	CE1	6.115996
786	2E2Y	ILE	68	CA	6.025953
787	2E2Y	HIS	93	NE2	2.147339
788	2E2Y	HIS	93	CE1	3.084295
789	2E2Y	HIS	93	ND1	4.218828
790	2E2Y	ILE	68	CD1	4.615037
791	2E2Y	HIS	93	CB	5.719846
792	2E2Y	ILE	68	CG1	4.409347
793	2E2Y	ILE	68	CB	5.618411
794	2E2Y	HIS	93	CA	6.508268
795	2E2Y	HIS	93	Ν	6.974609
796	2E2Y	SER	92	OG	6.454585

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	Ċ	de Numbe	5	
	PDB ID	Residue	Residue	Atom	Distance
797	2E2Y	ILE	68	Ν	6.587345
798	2E2Y	THR	67	CG2	6.891096
799	2E2Y	LEU	89	CD2	6.840761
800	2E2Y	LEU	89	CD1	5.350779
801	2E2Y	TRP	43	CH2	4.785277
802	2E2Y	TRP	43	CZ3	5.726918
803	2E2Y	TRP	43	CZ2	4.837758
804	2E2Y	TRP	43	CE3	6.592627
805	2E2Y	TRP	43	CE2	5.822864
806	2E2Y	LEU	89	CG	6.312412
807	2E2Y	ASP	64	0	6.865050
808	2E2Y	TRP	43	NE1	6.512078
809	2E2Y	HIS	97	NE2	5.536711
810	2E2Y	TRP	43	CD2	6.641236
811	2E2Y	ILE	107	CD1	6.704700
812	2E2Y	HIS	93	CD2	3.169440
813	2E2Y	ILE	99	CG1	5.522935
814	2E2Y	HIS	93	CG	4.293654
815	2E2Y	ILE	68	CG2	5.846267
816	2E2Y	ILE	99	CD1	6.203939
817	2E2Y	ILE	99	CG2	6.408774
818	2E2Y	ILE	99	CB	6.387531
819	2E2Y	HIS	97	CE1	6.449086
820	2E2Y	LEU	104	CD2	6.384225
821	2E2Y	HIS	97	CD2	5.024194
822	2E2Y	HIS	97	ND1	6.574172
823	2E2Y	HIS	97	CG	5.764004
824	2E2Y	HIS	97	CB	6.154168
825	2FC2	TRP	56	CG	6.458449
834	2FC2	TRP	56	CZ2	5.815614
835	2FC2	TRP	56	CE2	5.533414
836	2FC2	TRP	56	NE1	4.699520
837	2FC2	TRP	56	CD2	6.562358
838	2FC2	TRP	56	CD1	5.358495
839	2FC2	ILE	63	Ν	5.228967

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	s ID	.due	de	Aue Number		
	5Dr	Rest	Rest	Ator	Dist	
840	2FC2	CYS	62	SG	2.435575	
841	2FC2	CYS	62	CB	3.536192	
842	2FC2	CYS	62	Ο	5.978278	
843	2FC2	CYS	62	С	5.144583	
844	2FC2	CYS	62	CA	4.362565	
845	2FC2	CYS	62	Ν	5.440083	
846	2FC2	ARG	61	Ο	6.037753	
847	2FC2	ARG	61	С	6.107353	
849	2FC2	ILE	214	CD1	6.545905	
850	2FC2	PHE	231	CZ	6.507050	
851	2FC2	TRP	234	Ο	6.837576	
852	2FC2	SER	59	CB	6.581787	
853	2FC2	GLY	233	CA	6.467865	
854	2FC2	GLY	233	Ν	6.567286	
855	2FC2	PHE	231	CD1	6.261662	
856	2FC2	ARG	65	Ν	6.375567	
857	2FC2	GLY	64	Ο	6.600001	
858	2FC2	GLY	64	С	6.081704	
859	2FC2	GLY	64	CA	5.643363	
860	2FC2	GLY	64	Ν	5.205832	
861	2FC2	ILE	63	CG2	6.571768	
862	2FC2	\mathbf{PHE}	231	CE1	5.620466	
863	2FC2	ILE	63	С	6.279963	
864	2FC2	ILE	63	CA	6.344814	
865	2FC2	ARG	65	CG	6.543414	
866	2IIZ	VAL	228	CG1	5.347881	
867	2IIZ	ARG	242	CD	4.829683	
868	2IIZ	ARG	242	CG	6.171953	
869	2IIZ	ARG	242	NE	5.250492	
870	2IIZ	HIS	224	NE2	2.083556	
871	2IIZ	VAL	228	CB	5.630430	
872	2IIZ	ASP	151	OD1	4.711695	
873	2IIZ	LEU	255	CD2	6.075868	
874	2IIZ	ASP	151	CG	5.736038	
875	2IIZ	ILE	225	CG1	6.959216	

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	Co	de Numbe	5	
	PDB ID	Residue	Residue	Atom	Distance
876	2IIZ	HIS	224	ND1	$\begin{array}{c} 4.196756 \\ 6.765893 \\ 2.916346 \end{array}$
877	2IIZ	ILE	225	N	
878	2IIZ	HIS	224	CD2	
879	2IIZ	HIS	224	CG	4.113269
880	2IIZ	HIS	224	CB	$\begin{array}{c} 5.483611 \\ 6.074125 \\ 6.083437 \\ 6.285813 \\ 5.566800 \end{array}$
881	2IIZ	HIS	224	O	
883	2IIZ	ASP	151	OD2	
884	2IIZ	HIS	224	C	
885	2IIZ	LEU	286	CD2	
886	2IIZ	ILE	225	CD1	5.566335
888	2IIZ	ASP	284	OD2	6.598336
889	2IIZ	ASP	151	CB	6.913658
890	2IIZ	HIS	224	CA	6.479182
891	2IIZ	HIS	224	CE1	3.169809
892 893 894 895 896	2IIZ 2IIZ 2IIZ 2IIZ 2IIZ	PHE PHE PHE PHE ARG	257 257 257 257 257 242	CZ CE1 CD1 CG CZ	$5.892569 \\ 4.932157 \\ 5.448107 \\ 6.723349 \\ 5.007478$
897	2IIZ	ARG	242	NH2	5.941234
898	2IIZ	ARG	242	NH1	4.220492
899	2IIZ	VAL	228	CG2	4.969134
900	2IPS	HIS	351	CA	5.749235
901	2IPS	HIS	351	N	5.858503
902	2IPS	GLY	350	C	6.712596
903	2IPS	GLN	105	CD	5.606023
904	2IPS	HIS	351	ND1	4.080454
905	2IPS	HIS	351	CB	5.415193
908	2IPS	HIS	351	CE1	3.037140
909	2IPS	LEU	433	CD2	$\begin{array}{c} 4.521870\\ 6.543196\\ 6.592648\\ 5.980233\\ 5.960582\end{array}$
910	2IPS	ARG	348	NH1	
911	2IPS	ARG	348	NE	
912	2IPS	ARG	348	CG	
913	2IPS	ARG	348	CB	
914	2IPS	ARG	348	Ο	6.358253

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		Cos	te Numbe	5	
	808 ID	Residue	Residue /	Atom	Distance
915	2IPS	ARG	348	C	$\begin{array}{c} 6.696090 \\ 6.098489 \\ 5.382487 \\ 6.247737 \end{array}$
916	2IPS	ARG	348	CA	
917	2IPS	HIS	109	NE2	
918	2IPS	HIS	109	CE1	
919	2IPS	HIS	109	CD2	$\begin{array}{c} 6.143644 \\ 4.751823 \\ 6.859686 \\ 5.160410 \\ 2.856701 \end{array}$
920	2IPS	GLN	105	NE2	
921	2IPS	ARG	348	CZ	
922	2IPS	LEU	433	CD1	
923	2IPS	HIS	351	CD2	
924	2IPS	HIS	351	CG	$\begin{array}{c} 4.029645\\ 6.127171\\ 5.940936\\ 6.783302\\ 5.467499\end{array}$
925	2IPS	ASP	108	OD2	
926	2IPS	ARG	348	CD	
927	2IPS	LEU	433	CB	
928	2IPS	ASP	108	OD1	
929	2IPS	GLU	258	OE2	$\begin{array}{c} 6.284643 \\ 6.107822 \\ 6.256175 \\ 6.018289 \\ 6.906953 \end{array}$
930	2IPS	GLU	258	OE1	
931	2IPS	GLU	258	CD	
932	2IPS	ASP	108	CG	
933	2IPS	GLU	258	CG	
934 935 936 937 938	2IPS 2IPS 2IPS 2IPS 2IPS	GLN GLN GLN VAL LEU	$105 \\ 105 \\ 105 \\ 354 \\ 417$	OE1 CG CB CG2 CD1	$\begin{array}{c} 6.758873 \\ 5.451591 \\ 6.437183 \\ 6.655642 \\ 6.682821 \end{array}$
939	2IPS	LEU	417	CD2	$\begin{array}{c} 6.901804 \\ 6.083718 \\ 6.134033 \\ 6.613187 \\ 6.884046 \end{array}$
940	2IPS	ASN	437	ND2	
941	2IPS	ASN	437	OD1	
942	2IPS	ASN	437	CG	
943	2IPS	GLN	105	CA	
944	2IPS	HIS	351	NE2	$\begin{array}{c} 1.979467 \\ 5.368566 \\ 5.544619 \\ 6.850121 \\ 4.052531 \end{array}$
945	2IPS	LEU	433	CG	
946	2J0P	ILE	255	CD1	
947	2J0P	ILE	255	CG1	
948	2J0P	HIS	196	ND1	
949	2J0P	PHE	199	CEI	6.621060

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ó	Ç	de Aund	Anniber		
	EDB Jr	Residue/	Residue	Atom	Distance	
950 951 952 953	2J0P 2J0P 2J0P 2J0P	VAL PHE VAL HIS	195 246 195 196	CG2 CE1 CB NE2	5.617753 5.416275 6.997294 1.995959	
954 955 956 957 958	2J0P 2J0P 2J0P 2J0P 2J0P	HIS HIS HIS PHE HIS	196 196 196 199 196	CE1 CD2 CG CZ CB	$\begin{array}{c} 2.913044\\ 3.047082\\ 4.149956\\ 6.315753\\ 5.582205\end{array}$	
959 960 961 962 963	2J0P 2J0P 2J0P 2J0P 2J0P	HIS HIS PHE ASP PHE	$ 196 \\ 196 \\ 246 \\ 194 \\ 246 $	CA N CE2 OD2 CZ	$\begin{array}{c} 6.299600\\ 6.442225\\ 6.985655\\ 6.862392\\ 5.694124\end{array}$	
964 965 966 967 968	2J0P 2J0P 2J0P 2J0P 2J0P	ARG ARG ARG ARG ARG	102 102 102 102 102 102	NH2 NH1 CZ NE CD	$\begin{array}{c} 6.037140 \\ 4.561750 \\ 4.755083 \\ 3.944642 \\ 4.681022 \end{array}$	
969 970 971 972 973	2J0P 2J0P 2J0P 2J0P 2J18	ARG ARG PHE MET PRO	$ 102 \\ 102 \\ 246 \\ 244 \\ 30 $	CG CB CD1 CE C	$\begin{array}{c} 4.986154\\ 6.050972\\ 6.523961\\ 6.821994\\ 6.327097\end{array}$	
974 975 976 977 978	2J18 2J18 2J18 2J18 2J18 2J18	$\begin{array}{c} \mathrm{GLU} \\ \mathrm{GLU} \\ \mathrm{GLU} \\ \mathrm{GLU} \\ \mathrm{GLU} \\ \mathrm{GLU} \end{array}$	183 183 183 183 183	OE2 OE1 CD CG CB	$\begin{array}{c} 4.947637\\ 6.248705\\ 5.296484\\ 4.971319\\ 6.127612\end{array}$	
979 980 981 982 983	2J18 2J18 2J18 2J18 2J18 2J18	PRO GLU PRO CYS TRP	30 183 30 29 213	CA CA N SG CZ2	$\begin{array}{c} 6.400263\\ 6.743073\\ 5.267359\\ 2.327225\\ 6.782850\end{array}$	
984	2J18	LEU	32	CD2	6.145673	

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2 ID	. Ale	de . due Numbe	\$	N ^{ce}	
	PDD,	Rest	Resit	Atom	Distic	
985	2J18	LEU	32	CD1	5.249746	
986	2J18	CYS	29	0	5.805364	
987	2J18	LEU	32	CG	5.192432	
988	2J18	LEU	32	CB	0.073104	
989	2J18	LEU	32	CA	6.427634	
990	2J18	LEU	32	N CD	5.474246	
991	2J18 9 119	PRO	30	CD CA	4.944045	
992 993	2J18 2.J18	PRO	29 30	CA CG	4.207320 5 811047	
004	0110		20	CB	6 060101	
994 005	2J10 2J18		30 31	CB	0.000400 1.824723	
996	2J18 2J18	CYS	29	CB	3.312756	
997	2J18	CYS	29 29	N	5.406223	
998	2J18	PHE	103	CZ	5.737781	
999	2J18	PHE	57	CE1	6.580041	
1000	2J18	PHE	103	CE2	6.552953	
1001	2J18	PRO	28	Ο	6.068358	
1002	2J18	PRO	28	С	6.137689	
1003	2J18	PHE	103	CD1	6.785377	
1004	2J18	ALA	31	\mathbf{C}	6.121039	
1005	2J18	ALA	31	CA	5.629992	
1006	2J18	PHE	57	CZ	6.059994	
1007	2J18 2J18	PHE	29 103	CE1	5.040428 5.867260	
1000	2510		105	CE9	6.062279	
1009	2J18 2J18		07 21	UEZ N	0.903378 5 252748	
1010	2J18 2.J18	PHE	186	CZ	5.252740 5.827151	
1012	2J18	PHE	186	CE2	4.556892	
1013	2J18	ALA	71	CB	6.477348	
1014	2J18	PHE	186	CE1	6.896912	
1015	2J18	PHE	186	CD2	4.616209	
1016	2J18	PHE	186	CD1	6.919913	
1017	2J18	PHE	186	CG	5.911162	
1018	2J18	PHE	186	CB	6.451495	
1019	206P	VAL	119	CG2	6.077404	

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		Code	Numbe	5	
	Ś	20/	°,		.ce
	PDB /	Residu	Residu	Atom	Distall
1020	206P	VAL	119	CG1	6.110981
1021	2O6P	VAL	119	CB	6.341395
1022	2O6P	TYR	132	CD1	4.915283
1023	206P	ALA	49	CA	6.635661
1024	206P	ALA	49	Ν	6.076465
1025	206P	ILE	48	CD1	4.864651
1026	206P	ILE	48	CG2	3 754376
1020	2001 206P	TVB	136	CE2	4.244835
1027	2001 206P	TYR	136	CE1	5.540031
1020	2001		100		C 10010F
1029	206P	ILE	48	0	6.128135
1030	206P	ILE	48	C	5.861636
1031	206P		48	CA	5.831651
1032	206P	ΠE	48	Ν	6.659443
1033	206P	TYR	136	OH	3.981181
1034	206P	HIS	134	CD2	6.249883
1035	206P	HIS	134	CG	6.658817
1036	206P	HIS	134	CB	6.581079
1037	206P	ILE	48	CG1	5.280432
1038	206P	TYR	132	OH	2.048273
1039	206P	TYR	132	CZ	3.029479
1040	206P	ILE	48	CB	4.547451
1041	206P	TYR	132	CE2	3.989407
1042	206P	TYR	132	CE1	3 649141
1043	2001 206P	TYR	132	CD2	5.171507
1044	206P	TVB	139	CC	5 582168
1044	2001 206P	TVR	136	CD2	5 250508
1045	2001 206P	I II.	100	CD1	6 852081
1040 1047	2001 206P	TVP	121	CC	6.032001
1047	2001 206P	TVP	130	CZ	0.230712
1040	200F	IIN	130	CΣ	4.430633
1049	206P	TYR	52	OH	6.883091
1050	206P	TYR	52	CE2	6.481230
1051	206P	TYR	136	CD1	6.340717
1052	2Q6N	GLY	299	Ν	6.518431
1053	2Q6N	ALA	298	CB	4.749119
1054	2Q6N	ALA	298	0	6.101358

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		Ċ	ste Aunibe	5	
	Ś		e >		c [©]
	PDB	Residu	Residu	Atom	Distant
1055	2Q6N	ALA	298	С	6.018864
1056	2Q6N	ALA	298	CA	5.818802
1057	2Q6N	ALA	442	CB	6.935846
1058	2Q6N	ILE	363	CD1	6.720194
1059	2Q6N	ILE	435	С	6.428855
1062	2Q6N	ILE	363	CG1	6.869433
1063	2Q6N	PHE	429	CE1	6.200513
1064	2Q6N	PHE	429	CD1	5.568040
1065	2Q6N	PHE	429	CG	6.421549
1066	2O6N	PHE	429	CB	6.289117
1067	2Q6N	PHE	429	0	6.015390
1068	2Q6N	PHE	429	Č	6.622543
1069	2Q6N	PHE	429	ĊA	6 228656
1070	2Q6N	ILE	114	CD1	6.560571
1071	206N	PRO	428	0	6 945175
1072	2Q6N 2O6N	THR	302	CB	5 787195
1073	2@6N 206N	GLY	438	CA	5 530851
1075	2 \odot 6 N	THR	302	CC2	6 196351
1075	2QON 2O6N	CVS	436	CB	3 /191/9
1077	2001	CLU	430		5.412142
1078	2Q6N	GLU	439	N	5.919996
1079	2Q6N	GLY	438	0	6.147005
1080	2Q6N	GLY	438	С	5.742671
1082	2Q6N	GLU	439	CA	6.620933
1083	2Q6N	GLY	438	Ν	5.042187
1086	2Q6N	LEU	437	CB	6.344581
1088	2Q6N	LEU	437	С	6.077450
1089	2Q6N	LEU	437	CA	6.051221
1090	2Q6N	LEU	437	Ν	4.986629
1091	2Q6N	CYS	436	SG	2.272461
1092	2Q6N	THR	302	OG1	5.261641
1093	2Q6N	CYS	436	Ο	5.714731
1094	2Q6N	CYS	436	С	4.893650
1095	2Q6N	CYS	436	CA	4.182302
1096	2Q6N	CYS	436	Ν	5.358535
1097	2Q6N	ILE	435	0	6.634527

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Code Annoet					
	PDB ID	Residue	Residue	Atom	Distance	
1098	2R7A	GLN	253	OE1	5.564728	
1099	2R7A	LEU	257	CD2	6.219739	
1100	2R7A	TYR	67	CE2	4.383000	
1101	2R7A	LEU	257	CD1	4.400343	
1102	2R7A	TYR	67	CE1	3.419765	
1103	2R7A	LEU	257	CG	5.709105	
1104	2R7A	GLY	170	CA	6.235709	
1105	2R7A	GLY	170	Ν	5.608906	
1106	2R7A	ALA	169	CB	3.961766	
1107	2R7A	ALA	169	0	5.437785	
1108	2R7A	ALA	169	С	5.238544	
1109	2R7A	ALA	169	CA	5.115560	
1110	2R7A	ALA	169	Ν	6.361366	
1111	2R7A	TRP	68	CZ2	6.285840	
1112	2R7A	TYR	67	CD1	4.728948	
1113	2R7A	TYR	67	CG	5.632054	
1114	2R7A	LEU	167	CD1	6.804120	
1115	2R7A	LEU	167	CG	6.791967	
1116	2R7A	LEU	257	CB	5.908137	
1117	2R7A	TRP	68	NE1	5.647304	
1118	2R7A	TRP	68	CD1	6.518906	
1119	2R7A	TYR	67	OH	2.299557	
1120	2R7A	TYR	67	CZ	3.183906	
1121	2R7A	GLN	253	CD	6.597577	
1122	2R7A	TYR	67	CD2	5.472719	
1123	2R7A	TRP	68	CE2	6.316415	
1124	2R7A	LEU	167	CD2	5.928353	
1125	2R7A	THR	52	CG2	4.925867	
1126	2R7A	THR	52	CB	6.038417	
1127	2R7A	THR	52	CA	6.872261	
1128	2SPL	HIS	93	Ν	6.994165	
1129	2SPL	SER	92	OG	6.650791	
1130	2SPL	HIS	64	NE2	5.038259	
1131	2SPL	HIS	64	CE1	4.912606	
1132	2SPL	HIS	64	CD2	6.439022	

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2	Ċ	de Numbe	5	
	PDB ID	Residue/	Residue/	Atom	Distance
1133	2SPL	HIS	64	ND1	6.172233
1134	2SPL	HIS	64	CG	6.883278
1135	2SPL	PHE	43	CD2	6.365638
1136	2SPL	LEU	89	CD2	5.552852
1137	2SPL	LEU	89	CD1	6.956336
1138	2SPL	LEU	89	CG	6.830744
1139	2SPL	HIS	97	CB	6.284240
1140	2SPL	PHE	29	CZ	5.942149
1141	2SPL	PHE	29	CE1	6.316924
1142	2SPL	ILE	99	CD1	6.105261
1143	2SPL	ILE	99	CG2	6.554861
1144	2SPL	ILE	99	CG1	5.648982
1145	2SPL	PHE	43	CZ	5.252572
1146	2SPL	ILE	99	CB	6.583026
1147	2SPL	HIS	93	NE2	2.250800
1148	2SPL	PHE	43	CE2	5.171565
1150	2SPL	PHE	43	CE1	6.470892
1152	2SPL	HIS	97	CE1	6.582138
1153	2SPL	HIS	97	CD2	5.019365
1154	2SPL	HIS	97	ND1	6.645861
1155	2SPL	HIS	97	CG	5.854444
1156	2SPL	ILE	107	CD1	6.505472
1157	2SPL	LEU	104	CD2	6.518599
1158	2SPL	VAL	68	CG1	5.450572
1159	2SPL	VAL	68	CG2	4.726055
1160	2SPL	VAL	68	CA	6.468528
1161	2SPL	HIS	97	NE2	5.600465
1162	2SPL	HIS	93	CE1	3.180650
1163	2SPL	VAL	68	CB	5.746902
1164	2SPL	HIS	93	CD2	3.237413
1165	2SPL	HIS	93	ND1	4.311525
1166	2SPL	HIS	93	CG	4.404178
1167	2SPL	HIS	93	CB	5.753593
1168	2SPL	HIS	93	CA	6.496039
1169	2VEB	VAL	89	CG1	5.917494

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Þ	ane Co	de Aue Mundo	\$	alice
	PDp.	Resil	Resil	Atom	Disto
1170	2VEB	ILE	116	CG2	6.182483
1173	2VEB	PHE	74	CZ	5.980082
1174	2VEB	PHE	74	CE2	6.347131
1175	2VEB	PHE	74	CEI	6.888940
1176	2VEB	ILE	137	CD1	5.210730
1177	2VEB	ILE	137	CG2	6.657078
1178	2VEB	ILE	137	CG1	6.593755
1179	2VEB	PHE	145	CE2	6.316550
1180	2VEB	PHE	145	CD2	6.105756
1181	2VEB	PHE	93	CE2	5.450832
1182	2VEB	PHE	93	CE1	5.557580
1183	2VEB	PHE	93	CD2	5.744187
1184	2VEB	PHE	93	CZ	5.331525
1185	2VEB	PHE	93	CD1	5.865122
1186	2VEB	PHE	93	CB	6.757747
1187	2VEB	HIS	120	NE2	2.127885
1188	2VEB	HIS	120	CE1	3.089174
1189	2VEB	HIS	120	CD2	3.127584
1190	2VEB	HIS	120	NDI	4.217047
1191	2VEB	HIS	120	CG	4.266510
1192	2VEB	TRP	185	CH2	5.863505
1193	2VEB	LEU	142	CD1	6.144500
1194	2VEB	HIS	120	CB	5.683771
1195	2VEB	IRP	185	UZ3	5.201833
1196	2VEB	LEU	142	CG	6.173056
1197	2VEB	HIS	120	CA	6.386457
1198	2VEB	ILE	116	U N	6.964660
1199	2VEB	HIS	120	N CD	6.875243
1200	2VEB	LLE	137	ЛЪ	0.983292
1201	2VEB	LEU	142	CD2	6.676723
1202	2VEB	TRP	185	CE3	6.028638
1203	2VEB	PHE	93	CG	5.963832
1205 1906	3HX9 211V0	ALA	71	U NE9	0.697858
1206	3HA9	HIS	75	NEZ	2.101037
1207	3HX9	HIS	75	CG	4.351798

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	Çc	de Anno	Ş.	C
	PDBIL	Residue	Residue	Atom	Distance
1208	3HX9	PHE	23	CD2	9.338284
1209	3HX9	ILE	9	CG2	9.023857
1210	3HX9	HIS	75	CE1	2.959564
1211	3HX9	PHE	23	CE2	8.402145
1212	3HX9	PHE	23	CE1	8.404853
1213	3HX9	ILE	9	CB	10.034353
1214	3HX9	ASN	7	OD1	7.587216
1215	3HX9	ALA	71	0	5.763470
1216	3HX9	ASN	7	CB	9.186177
1217	3HX9	ASN	7	CA	10.695965
1218	3HX9	HIS	75	CD2	3.298557
1219	3HX9	PHE	23	CZ	7.897254
1220	3HX9	HIS	75	CB	5.820270
1221	3HX9	ILE	9	CD1	9.616978
1222	3HX9	ASN	7	CG	8.514367
1223	3HX9	PHE	23	CD1	9.357413
1224	3HX9	TRP	66	CH2	7.852796
1225	3HX9	ASN	7	ND2	9.169066
1226	3HX9	VAL	53	CG2	10.078838
1227	3HX9	VAL	53	CG1	9.844594
1228	3HX9	VAL	53	CB	10.355397
1229	3HX9	HIS	75	CA	6.621486
1230	3HX9	HIS	75	ND1	4.156833
1231	3MVF	LEU	133	CB	6.936452
1232	3MVF	LEU	123	CB	6.256287
1233	3MVF	HIS	59	NE2	2.014759
1234	3MVF	THR	121	CG2	6.595150
1235	3MVF	HIS	59	CE1	2.975441
1236	3MVF	HIS	59	CD2	3.034990
1237	3MVF	HIS	59	ND1	4.106163
1238	3MVF	HIS	59	CG	4.159371
1239	3MVF	HIS	59	CB	5.568195
1240	3MVF	LEU	133	CD2	4.998520
1241	3MVF	LEU	123	CD2	4.947831
1242	3MVF	LEU	133	CG	6.451363

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		Coge	NUMBE	5	
	Ś	.e/			co
	PDB.	Residu	Residu	Atom	Distant
1243	3MVF	LEU	123	CD1	6.251141
1244	3MVF	LEU	123	CG	6.110708
1245	3MVF	PHE	68	CZ	5.471776
1246	3MVF	PHE	68	CE2	6.730223
1247	3MVF	PHE	68	CE1	5.542608
1248	3MVF	PHE	68	CD1	6.840606
1249	3MVF	LEU	57	CD1	6.242544
1250	3MVF	ALA	42	CB	5.827660
1252	3MVF	HIS	$59^{}$	ĊĀ	6.609256
1255	3MVF	TYR	40	CD2	6.970942
1256	3MVF	LEU	133	CD1	6.980388
1257	3MVF	TYR	40	CG	6.711507
1258	3MVF	TYR	40	CB	6.595774
1259	3QZN	MET	84	CB	6.851692
1260	30ZN	MET	84	СА	6.309965
1261	30ZN	MET	84	Ν	5.850043
1262	3QZN	HIS	83	NE2	2.014537
1263	3QZN	HIS	83	CE1	3 007731
1264	3QZN	HIS	83	CD2	3.007864
1265	30ZN	HIS	83	ND1	4.110545
1266	30ZN	HIS	83	CG	4.142348
1267	30ZN	HIS	83	CB	5.565490
1268	3QZN	HIS	83	0	5.916970
1269	3QZN	HIS	83	Č	5.814782
1270	3QZN	HIS	83	CA	6.255440
1271	30ZN	HIS	83	Ν	6.769288
1272	30ZN	ILE	164	CD1	6.384201
1273	3QZN	VAL	161	CG2	5.335101
1274	3QZN	VAL	161	CG1	6.990677
1275	3QZN	VAL	161	СВ	6.546703
1276	3QZN	TYR	87	OH	6.350070
1277	3QZN	TYR	87	CZ	6.298706
1278	3QZN	TYR	87	CE2	5.620526
1279	3QZN	TYR	87	CD2	5.999083
1280	3QZN	TYR	87	CG	6.990261

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

ppppppcode12813QZNILE12823QZNALA12833QZNTYR	Residue Numbe 159 166 170 170	konn CB CB OH	Dis ^{tance} 5.971449 6.907969
PDBP12813QZN12823QZNALA12833QZN	Residue 159 166 170 170	A ^{kom} CB CB OH	vi ^{stance} 5.971449 6.907969
PDBResidue12813QZNILE12823QZNALA12833QZNTYR	Residue 159 166 170 170	N ^{koff} CB CB OH	0 ^{istanc} 5.971449 6.907969
$\begin{array}{c c} & & & & & & \\ \hline 1281 & 3QZN & ILE \\ 1282 & 3QZN & ALA \\ 1283 & 3QZN & TYR \end{array}$	\$ 159 166 170 170 170	CB CB OH	5.971449 6.907969
1281 3QZN ILE 1282 3QZN ALA 1283 3QZN TYR	159 166 170 170	CB CB OH	5.971449 6.907969
1282 3QZN ALA 1283 3QZN TYR	166 170 170	CB OH	6.907969
1283 3QZN TYR	170 170	OH	
	170		4.518724
1284 3QZN TYR		CZ	5.015562
1285 3QZN TYR	170	CE2	5.062321
1286 3QZN TYR	170	CE1	5.919869
1287 3QZN TYR	170	CD2	5.987599
1288 3QZN TYR	170	CD1	6.735975
1289 3QZN TYR	170	CG	6.789363
1290 3QZN ILE	159	CG2	5.411977
1291 3QZN ILE	159	CG1	6.214812
1292 3QZN HIS	168	CD2	6.973181
1293 3QZZ LEU	142	CD2	6.810337
1294 3QZZ LEU	142	CD1	6.509648
1295 3QZZ LEU	142	CG	6.284455
1296 3QZZ HIS	120	CE1	3.225914
1297 3QZZ PHE	93	CZ	6.599510
1298 JOZZ PHE	93	CD1	5.193243
1299 3QZZ PHE	93	CG	6.334800
1300 3QZZ PHE	93	СВ	6.692918
1301 $3OZZ$ TRP	60	CZ2	6.325750
1302 $3QZ$ TRP	60	CE2	6.793651
1303 $3OZZ$ HIS	120	ND1	4.353591
1304 3QZZ HIS	120	CG	4.400138
1305 3QZZ HIS	120	CA	6.485812
1306 JOZZ TRP	185	CH2	5.787465
1307 3QZZ HIS	120	CD2	3.256791
1308 $3OZZ$ ILE	137	CD1	5.400625
1309 3QZZ ILE	137	CG2	6.903075
1310 3QZZ ILE	116	CG2	6.274179
1311 3QZZ ILE	116	0	6.670533
1312 30ZZ PHE	93	CE1	5.346879
1313 30ZZ HIS	120	Ν	6.981209
1314 3QZZ HIS	120	СВ	5.817278
1315 3QZZ TRP	185	CZ3	5.529425

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2	Çc	de Aunde	\$÷	
	1 I I I I I I I I I I I I I I I I I I I	Alle	, Alle	Ω	alce
	5DD	Resil	Resit	Atom	Dista
1316	3QZZ	PHE	74	CZ	6.130376
1317	3QZZ	PHE	74	CE2	6.307462
1318	3QZZ	TRP	185	CZ2	6.784966
1319	3QZZ	ILE	137	CG1	6.878192
1320	3QZZ	TRP	60	NE1	6.356098
1321	3QZZ	TRP	185	CE3	6.345344
1322	3QZZ	PHE	145	CE2	5.978493
1323	3QZZ	PHE	145	CD2	5.771054
1324	3QZZ	PHE	145	CG	6.829341
1325	3QZZ	HIS	120	NE2	2.271793
1326	3QZZ	VAL	89	CG1	5.927268
1327	3SIK	ILE	131	CD1	6.481115
1328	3SIK	ALA	138	CB	6.231014
1329	3SIK	ARG	54	CG	5.962951
1330	3SIK	ARG	54	CB	6.217635
1331	3SIK	TYR	136	CZ	3.262868
1332	3SIK	TYR	136	CE1	3.949720
1333	3SIK	TYR	136	CD2	5.291753
1334	3SIK	TYR	136	CD1	5.174201
1335	3SIK	TYR	136	CG	5.768837
1336	3SIK	TYR	136	OH	2.279269
1337	3SIK	ILE	129	CD1	6.830934
1338	3SIK	ILE	129	CG2	5.924310
1339	3SIK	ILE	129	CG1	5.926524
1340	3SIK	ILE	129	CB	6.074748
1341	3SIK	TYR	140	OH	3.728919
1342	3SIK	TYR	140	CZ	4.336624
1343	3SIK	TYR	140	CE2	4.340959
1344	3SIK	TYR	140	CE1	5.403494
1345	3SIK	TYR	140	CD2	5.411071
1346	3SIK	TYR	140	CD1	6.298331
1347	3SIK	TYR	140	CG	6.321555
1348	3SIK	TYR	136	CE2	4.096641
1349	3TGC	HIS	59	NE2	2.073508
1350	$3 \mathrm{TGC}$	HIS	59	CE1	3.031618

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	; ;			
	PDB II	Residue	Residue	Atom	Distance
1351	3TGC	HIS	59	CD2	3.067153
1352	3TGC	HIS	59	ND1	4.143162
1353	$3 \mathrm{TGC}$	HIS	59	CG	4.193769
1354	3TGC	HIS	59	CB	5.605485
1355	3TGC	HIS	59	CA	6.591063
1356	$3 \mathrm{TGC}$	LEU	123	CD2	5.064444
1357	3TGC	LEU	123	CD1	6.334292
1358	$3 \mathrm{TGC}$	LEU	123	CG	6.096295
1359	$3 \mathrm{TGC}$	LEU	123	CB	6.139668
1360	3TGC	PHE	68	CE1	6.709550
1361	$3 \mathrm{TGC}$	PHE	68	CD2	6.849456
1362	$3 \mathrm{TGC}$	PHE	68	CZ	5.482311
1364	3TGC	THR	121	CG2	6.343084
1365	3TGC	LEU	133	CD2	4.891290
1366	3TGC	VAL	36	CG1	6.135653
1367	$3 \mathrm{TGC}$	LEU	133	CD1	6.995547
1368	3TGC	LEU	133	CG	6.395440
1369	$3 \mathrm{TGC}$	LEU	133	CB	6.978042
1372	3TGC	LEU	57	CD1	6.147624
1373	3TGC	ALA	42	CB	6.033598
1374	$3 \mathrm{TGC}$	TYR	40	OH	5.966614
1375	$3 \mathrm{TGC}$	TYR	40	CZ	6.113585
1376	$3 \mathrm{TGC}$	TYR	40	CE2	5.584403
1377	3TGC	TYR	40	CD2	6.204258
1378	3TGC	PHE	68	CE2	5.569867
1379	3VP5	LYS	145	CG	4.647679
1380	3VP5	LYS	145	CB	5.489262
1381	3VP5	LYS	145	0	5.884138
1382	3VP5	LYS	145	С	6.211987
1383	3VP5	LYS	145	CA	5.589317
1384	3VP5	LYS	145	Ν	6.702039
1385	3VP5	PHE	112	CZ	6.293359
1386	3VP5	THR	130	OG1	5.980868
1387	3VP5	THR	68	CG2	4.932643
1388	3VP5	THR	68	СВ	6.459137

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	çode	2 Authlife	\$	
	PDB IV	Residue	Residue	Atom	Distance
1389	3VP5	HIS	72	NE2	2.117132
1390	3VP5	HIS	72	CE1	2.965993
1391	3VP5	HIS	72	CD2	3.179344
1392	3VP5	HIS	72	ND1	4.117728
1393	3VP 5	HIS	72	CG	4.247640
1394	3VP5	HIS	72	CB	5.675310
1395	3VP5	HIS	72	Ν	6.507429
1396	3VP5	THR	68	OG1	6.984301
1397	3VP5	ILE	71	CG2	5.826383
1398	3VP5	ILE	71	\mathbf{C}	6.987649
1399	3VP5	VAL	131	CG1	5.568423
1400	3VP5	PHE	112	CE1	6.724964
1401	3VP5	HIS	72	CA	6.165190
1402	3VP5	HIS	149	NE2	2.103609
1403	3VP5	HIS	149	CE1	2.965920
1404	3VP5	HIS	149	CD2	3.188081
1405	3VP5	TYR	91	OH	6.574739
1406	3VP5	HIS	149	ND1	4.131927
1407	3VP5	HIS	149	CG	4.260659
1408	3VP 5	HIS	149	CB	5.705258
1409	3VP5	THR	68	0	6.283705
1410	3VP5	HIS	149	CA	6.173446
1411	3VP5	HIS	149	Ν	6.277780
1412	3VP5	VAL	148	CG1	6.781035
1413	3VP5	VAL	148	CB	6.996095
1414	3VP5	PHE	76	CE2	6.844578
1415	3VP5	LYS	145	CE	6.634337
1416	3VP5	LYS	145	CD	5.501776
1417	3ZJS	PHE	74	CZ	5.804638
1418	3ZJS	PHE	74	CE2	6.729639
1419	3ZJS	PHE	74	CE1	6.276511
1420	3ZJS	PHE	145	CE2	6.165787
1421	3ZJS	PHE	145	CD2	5.954110
1422	3ZJS	TYR	61	OH	6.548411
1423	3ZJS	PHE	93	CB	6.939455

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	ço	le Aunife	Ş.	2
	PDB JI	Residue	Residue	Atom	Distance
1424	3ZJS	HIS	120	NE2	2.059360
1425	3ZJS	HIS	120	CE1	2.908669
1426	3ZJS	HIS	120	CD2	3.168277
1427	3ZJS	HIS	120	ND1	4.083304
1428	3ZJS	HIS	120	CG	4.231957
1429	3ZJS	HIS	120	CB	5.678985
1430	3ZJS	HIS	120	CA	6.385536
1431	3ZJS	HIS	120	Ν	6.901157
1432	3ZJS	TRP	60	CZ2	6.391269
1433	3ZJS	TRP	60	CE2	6.655729
1434	3ZJS	TRP	60	NE1	6.053999
1435	3ZJS	TRP	185	CZ2	6.914712
1437	3ZJS	ILE	116	Ο	6.859685
1440	3ZJS	ILE	116	CG2	6.178215
1441	3ZJS	VAL	89	CG1	5.790982
1442	3ZJS	PHE	93	CE2	4.977692
1443	3ZJS	PHE	93	CD2	5.069659
1444	3ZJS	PHE	93	CG	6.388068
1445	3ZJS	TRP	185	CH2	5.742174
1446	3ZJS	TRP	185	CZ3	5.188422
1447	3ZJS	TRP	185	CE3	5.997883
1448	3ZJS	ILE	137	CD1	5.330212
1449	3ZJS	ILE	137	CG1	6.789524
1450	3ZJS	ILE	137	CG2	6.825342
1451	3ZJS	PHE	93	CZ	6.237529
1452	3ZJS	LEU	142	CD1	6.214702
1453	3ZJS	LEU	142	CG	6.365141
1454	4B8N	PHE	67	CZ	6.398576
1455	4B8N	PHE	67	CE1	5.206994
1456	4B8N	ILE	55	CB	6.806924
1457	4B8N	PHE	44	CD2	6.780683
1458	4B8N	PHE	67	CD1	5.207972
1459	4B8N	PHE	67	CG	6.402467
1460	4B8N	PHE	67	CB	6.873247
1461	4B8N	ILE	55	CD1	5.158658

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2	Ċ	de Aunte	5	
	PDB ID	Residue/	Residue	Atom	Distance
1462	4B8N	PHE	67	0	6.909133
1463	4B8N	ALA	54	CB	6.390793
1464	4B8N	PHE	67	CA	6.743413
1465	4B8N	HIS	71	Ν	6.631851
1466	4B8N	ILE	55	CG1	5.309802
1467	4B8N	LEU	70	CD1	6.337293
1468	4B8N	VAL	75	CG1	6.033658
1469	4B8N	LEU	70	CG	6.853951
1470	4B8N	GLY	51	Ο	6.493390
1471	4B8N	LEU	70	CB	5.993916
1472	4B8N	GLY	51	Ν	6.432510
1473	4B8N	GLY	50	0	6.294923
1474	4B8N	GLY	50	С	5.825586
1475	4B8N	GLY	50	CA	4.927444
1476	4B8N	GLY	50	Ν	4.811922
1477	4B8N	PRO	49	CD	5.624588
1478	4B8N	PRO	49	CG	6.483337
1479	4B8N	PRO	49	CB	6.381396
1480	4B8N	PRO	49	Ο	6.861719
1481	4B8N	LEU	70	С	6.423615
1482	4B8N	PRO	49	\mathbf{C}	5.902910
1483	4B8N	PRO	49	CA	6.292279
1484	4B8N	PRO	49	Ν	5.727846
1485	4B8N	HIS	48	NE2	1.926346
1486	4B8N	HIS	48	CE1	2.862963
1487	4B8N	HIS	48	CD2	2.954577
1488	4B8N	HIS	48	ND1	4.005662
1489	4B8N	HIS	48	CG	4.078625
1490	4B8N	HIS	48	CB	5.508528
1491	4B8N	HIS	48	0	6.796537
1492	4B8N	HIS	48	С	6.100566
1493	4B8N	HIS	48	CA	6.080760
1494	4B8N	HIS	71	NE2	2.047263
1495	4B8N	HIS	71	CD2	3.054285
1496	4B8N	LEU	70	0	6.176021

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	0	Coge	Annipe	\$	
		due	· due	æ	ance
	PDr.	Reste	Reste	Aton	Distic
1497	4B8N	HIS	71	ND1	4.164509
1498	4B8N	HIS	71	CE1	3.025952
1499	4B8N	HIS	71	CB	5.649980
1500	4B8N	HIS	71	CA	6.538607
1501	4B8N	LEU	70	CA	6.952706
1502	4B8N	PHE	44	CZ	5.956647
1503	4B8N	HIS	71	CG	4.216480
1504	4B8N	PHE	44	CE2	5.622671
1508	4CDP	PHE	243	CZ	5.503151
1509	4CDP	PHE	243	CE2	5.205184
1510	4CDP	MET	241	CE	6.340896
1511	4CDP	\mathbf{PHE}	243	CE1	6.874226
1512	4CDP	\mathbf{PHE}	243	CD2	6.395301
1513	4CDP	ARG	100	NE	4.244147
1514	4CDP	HIS	193	CD2	3.093658
1515	4CDP	ARG	100	NH2	5.077263
1516	4CDP	ARG	100	NH1	6.419809
1517	4CDP	ARG	100	CZ	5.149393
1518	4CDP	ARG	100	CD	4.912842
1519	4CDP	ARG	100	CG	5.280319
1520	4CDP	ARG	100	CB	6.438838
1524	4CDP	HIS	193	NE2	2.111868
1525	4CDP	LEU	90	CD1	6.499175
1526	4CDP	HIS	193	ND1	4.215850
1527	4CDP	HIS	193	CG	4.248253
1528	4CDP	HIS	193	CB	5.657905
1529	4CDP	HIS	193	CA	6.341823
1530	4CDP	HIS	193	Ν	6.563416
1531	4CDP	VAL	192	CG2	5.600764
1532	4CDP	ILE	252	CD1	5.488395
1533	4CDP	HIS	193	CE1	3.108264
1534	4CDP	ILE	252	CG1	6.868024
1535	4CDP	ASP	191	OD1	6.789427
1536	4I3Q	CYS	442	\mathbf{C}	4.698270
1537	4I3Q	CYS	442	CA	3.911617

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		20	de Aunde	5	
	\mathbf{Q}		.e.		ce
	oDB	Besidu	Residu	Ntom	Distalle
	`	`	>	ζ.	· · · · · · · · · · · · · · · · · · ·
1538	4I3Q	MET	445	CB	6.482176
1539	4I3Q	MET	445	CA	5.997661
1540	4I3Q	MET	445	Ν	5.446685
1541	4I3Q	GLY	444	0	5.675947
1542	4I3Q	GLY	444	С	5.268493
1543	4I3Q	GLY	444	CA	5.138813
1544	4I3Q	GLY	444	Ν	4.806324
1545	4I3Q	GLY	306	Ν	6.469042
1546	4I3Q	PHE	435	CG	6.258619
1547	4130	ILE	443	CG2	6.183244
1548	4130	$\overline{\mathrm{ILE}}$	443	CB	6 806828
1549	4130	ILE	443	C	5 918812
1550	4130	ILE	443	CA	6.065666
1551	4130	ILE	440	N	4 950565
1001	41002		440	1	4.550505
1552	4I3Q	CYS	442	SG	2.075439
1553	4I3Q	CYS	442	CB	3.250313
1554	4I3Q	ARG	212	NH2	6.564614
1555	4I3Q	ARG	212	NH1	5.916129
1556	4I3Q	ARG	212	CZ	6.697803
1557	4I3Q	CYS	442	Ν	5.109792
1558	4I3Q	THR	309	CG2	6.233366
1559	4I3Q	THR	309	OG1	6.005998
1560	4I3Q	ASN	441	0	6.197601
1561	4I3Q	ALA	305	CA	5.838653
1562	4I3O	THR	309	CB	6.403658
1563	4130	ASN	441	Ċ	6.080718
1564	4130	GLY	306	ĊA	6.677164
1565	4130	ALA	305	CB	5 014988
1566	4I3Q	ALA	305	0	4.814355
1567	4130	ΔΤΔ	305	С	5 553003
1568	4130	PHE		CE1	5 762002
1560	4130		400	CD1	5 205/02
1570	41002		400 410	CP	0.200400 6 1/1929
1571	410Q		440 495	CB	0.441202
1911	413Q	гпе	430	UD	0.203372
1572	4I3Q	PHE	435	Ο	6.569787

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	C ^C	de Numb	5	c©
	PDB .	Residue	Residue	Atom	Distant
1573	4I3Q	PHE	435	С	6.792849
1574	4I3Q	PHE	435	CA	6.278641
1575	4I3Q	PRO	434	0	6.893037
1576	4I3Q	CYS	442	0	5.469258
1577	4JET	PHE	77	CD1	5.396711
1578	4JET	PHE	77	CG	6.526201
1579	4JET	PHE	77	CB	6.711537
1580	4JET	PHE	77	Ο	6.850662
1581	4JET	PHE	77	С	6.647784
1582	4JET	PHE	77	CA	6.026391
1583	4JET	TYR	55	OH	6.877273
1584	4JET	PHE	77	Ν	6.593260
1585	4JET	TYR	75	OH	2.152890
1586	4JET	TYR	75	CZ	3.067076
1587	4JET	TYR	75	CE2	3.817746
1588	4JET	TYR	75	CE1	3.831066
1589	4JET	TYR	75	CD2	4.998270
1590	4JET	TYR	75	CD1	5.008661
1591	4JET	TYR	75	CG	5.524260
1592	4JET	TYR	75	CB	6.960877
1593	4JET	HIS	81	ND1	4.059069
1594	4JET	ILE	30	CD1	6.988601
1595	4JET	ARG	144	NH2	6.167147
1597	4JET	ARG	40	NH2	6.489466
1598	4JET	ARG	40	NH1	4.394630
1599	4JET	ARG	40	CZ	5.351691
1600	4JET	ARG	40	NE	5.456435
1601	4JET	HIS	81	NE2	5.896538
1602	4JET	ARG	40	CG	5.777773
1603	4JET	HIS	81	CD2	5.899344
1604	4JET	ARG	40	0	5.935206
1605	4JET	HIS	81	CG	4.816417
1606	4JET	HIS	81	CB	4.827998
1607	4JET	HIS	81	0	6.044402
1608	4.JET	HIS	81	С	6.254399

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	çõ	de Annabe	Ş.	0
	PDB II	Residue	Residue	Atom	Distance
1609 1610 1611 1612	4JET 4JET 4JET 4JET	HIS MET MET ARG	81 147 147 40	CA CE SD CD	$5.764024 \\ 5.428378 \\ 6.192637 \\ 4.670577$
$ 1613 \\ 1614 \\ 1615 \\ 1616 \\ 1617 $	4JET 4JET 4JET 4JET 4JET	HIS ARG ARG PHE ARG	$81 \\ 40 \\ 40 \\ 50 \\ 144$	CE1 CB CA CE1 NH1	$\begin{array}{c} 4.868006\\ 5.509273\\ 6.365250\\ 6.875792\\ 5.381658\end{array}$
1618 1619 1620 1621 1622	4JET 4JET 4JET 4JET 4JET	ARG ARG PHE ARG	$ 144 \\ 144 \\ 144 \\ 77 \\ 40 $	CZ NE CD CE1 C	5.964601 6.695763 6.988768 5.734833 6.653694
1623 1624 1625 1626 1627	4MF9 4MF9 4MF9 4MF9 4MF9	ARG ARG ARG ARG ARG	112 112 112 112 112 112	NH1 CZ NE CD CG	5.908430 4.583693 3.954048 4.943968 5.215713
1628 1629 1630 1631 1632	4MF9 4MF9 4MF9 4MF9 4MF9	ARG ILE ILE HIS PHE	112 268 268 209 259	CB CD1 CG1 NE2 CE1	$\begin{array}{c} 6.563876 \\ 5.438718 \\ 6.746285 \\ 2.317556 \\ 6.449315 \end{array}$
$1633 \\ 1634 \\ 1635 \\ 1636 \\ 1637$	4MF9 4MF9 4MF9 4MF9 4MF9	PHE PHE HIS HIS HIS	259 259 209 209 209	CZ CE2 CE1 CD2 ND1	$5.111950 \\ 4.954202 \\ 3.085814 \\ 3.439551 \\ 4.292418$
1638 1639 1640 1641 1642	4MF9 4MF9 4MF9 4MF9 4MF9	HIS HIS HIS HIS THR	209 209 209 209 209 208	CG CB CA N OG1	$\begin{array}{c} 4.485889\\ 5.921420\\ 6.556937\\ 6.752312\\ 6.202558\end{array}$
1643	4MF9	MET	257	CE	6.826627

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	_	C	de Aunibe	Ş.	
	2 D	· due	· Alle	<i>₽</i>	alle
	8Dr.	Reste	Rest	Atol	Diste
1644	4MF9	PHE	259	CD2	6.205870
1645	4MF9	ARG	112	NH2	4.225025
1646	$4 \mathrm{MYP}$	TYR	289	OH	5.731955
1647	4MYP	TYR	289	CZ	5.740930
1648	4MYP	TYR	289	CE2	4.817949
1649	4MYP	TYR	289	CE1	6.983768
1650	4MYP	TYR	289	CD2	5.412198
1651	4MYP	TYR	289	CG	6.718568
1653	4MYP	GLN	292	Ο	6.295350
1654	4MYP	GLN	292	С	6.800198
1655	4MYP	SER	205	OG	6.617062
1656	4MYP	SER	205	CB	6.693650
1657	4MYP	TYR	280	CG	5.557939
1659	4MYP	ALA	282	CB	6.581195
1662	4MYP	ALA	293	CB	6.207799
1663	4MYP	TYR	280	OH	2.241904
1664	4MYP	TYR	280	CZ	3.125220
1665	$4 \mathrm{MYP}$	TYR	280	CE2	3.638807
1666	4MYP	TYR	280	CE1	4.094491
1667	4MYP	TYR	280	CD2	4.859603
1668	4MYP	TYR	280	CD1	5.219711
1669	4MYP	GLN	292	Ν	6.517151
1670	4MYP	TYR	280	CB	6.984319
1671	4MYP	GLY	291	С	6.680563
1672	$4 \mathrm{MYP}$	GLY	291	CA	6.194217
1673	4MYP	GLY	291	Ν	6.999319
1674	4NL5	HIS	75	NE2	2.104978
1675	4NL5	HIS	75	CE1	3.104569
1676	4NL5	HIS	75	CD2	3.069944
1677	4NL5	HIS	75	CG	4.225192
1678	4NL5	HIS	75	CB	5.634306
1679	4NL5	HIS	75	Ν	6.961089
1680	4NL5	HIS	75	ND1	4.208060
1681	4NL5	ILE	9	CG1	6.173687
1682	4NL5	PHE	23	CZ	4.441792

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		C	de Numbe	5	
	D.	ane/	NIC >	2	-DCC
	PDP2	Resilu	Resil	Atolli	Distor
1683	4NL5	PHE	23	CE2	5.447105
1684	4NL5	PHE	23	CE1	4.674371
1685	4NL5	PHE	23	CD2	6.454918
1686	4NL5	PHE	23	CD1	5.826689
1687	4NL5	PHE	23	CG	6.637661
1688	4NL5	VAL	53	CG2	5.925648
1689	4NL5	ASN	7	OD1	6.317583
1690	4NL5	ASN	7	CG	5.347163
1691	4NL5	VAL	53	CB	6.117223
1692	4NL5	TRP	66	CH2	5.714910
1693	4NL5	HIS	75	CA	6.483349
1694	4NL5	ILE	9	CD1	5.340059
1695	4NL5	TRP	66	CZ3	6.561020
1696	4NL5	TRP	66	CZ2	6.429975
1697	4NL5	ASN	7	ND2	4.367008
1699	4NL5	ALA	71	Ο	6.805378
1701	4NL5	ASN	7	CB	5.577170
1702	4NL5	VAL	53	CG1	5.685544
1703	4UZV	PHE	119	CZ	5.563907
1704	4UZV	PHE	119	CE2	4.888108
1705	4UZV	HIS	106	CE1	2.936415
1706	4UZV	HIS	106	CD2	3.276521
1707	4UZV	HIS	106	ND1	4.133180
1708	4UZV	HIS	106	CG	4.324605
1709	4UZV	HIS	106	CB	5.784272
1710	4UZV	HIS	106	CA	6.476877
1711	4UZV	HIS	106	Ν	6.951515
1712	4UZV	PHE	119	CE1	6.621653
1713	4UZV	PHE	119	CD2	5.465257
1714	4UZV	PHE	119	CG	6.564430
1715	4UZV	LEU	79	CG	5.900085
1716	4UZV	ARG	105	Ο	6.453543
1717	4UZV	ARG	105	С	6.925435
1718	4UZV	MET	151	CB	6.579915
1719	4UZV	PHE	67	CE2	6 655780

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ó	5	2		
	PDB II	Residue	Residue	Atom	Distance
1720	4UZV	MET	151	SD	6.112443
1721	4UZV	MET	151	CE	5.320884
1722	4UZV	ILE	111	CD1	5.897899
1723	4UZV	LEU	102	0	6.801707
1728	4UZV	HIS	106	NE2	2.135102
1729	4UZV	PHE	67	CE1	5.827176
1730	4UZV	LEU	79	CD2	6.157220
1731	4UZV	LEU	79	CD1	6.454240
1732	4UZV	MET	151	CG	5.618995
1733	4UZV	LEU	79	CB	6.896961
1734	4UZV	PHE	53	CZ	6.997808
1735	4UZV	PHE	67	CZ	5.469994
1736	4UZV	PHE	53	CE2	6.886051
1737	4XZD	PHE	77	CB	6.624785
1738	4XZD	ARG	40	CD	5.490855
1739	4XZD	TYR	75	CG	5.396533
1740	4XZD	PHE	77	CZ	6.937227
1741	4XZD	TYR	75	CB	6.812150
1742	4XZD	PHE	77	CE1	5.566787
1743	4XZD	PHE	77	CD1	5.231466
1744	4XZD	PHE	77	CG	6.408436
1745	4XZD	PHE	77	0	6.716959
1746	4XZD	PHE	77	CA	5.941161
1747	4XZD	ARG	40	CG	5.500107
1748	4XZD	PHE	77	Ν	6.474273
1749	4XZD	MET	147	SD	5.934163
1750	4XZD	TYR	75	CE2	3.772469
1751	4XZD	TYR	75	CE1	3.701583
1752	4XZD	TYR	75	CD2	4.924184
1753	4XZD	TYR	75	CD1	4.866644
1754	4XZD	MET	147	CE	6.661558
1755	4XZD	ARG	40	С	6.702015
1756	4XZD	ARG	144	NH2	6.541360
1757	4XZD	ARG	144	NH1	5.250987
1758	4XZD	ARG	144	CZ	6.101746

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		Xe	i alter	5	
	\sim	Coc	Alle		
	2 IV	. 110	. 110	$\hat{\mathbf{v}}$	ance
	2DD	Resil	Resil	Atom	Distic
1759	4XZD	ARG	144	NE	6.838649
1760	4XZD	ARG	40	NE	6.060155
1761	4XZD	ARG	144	CD	6.945827
1762	4XZD	PHE	77	C	6.580665
1763	4XZD	HIS	81	CE1	4.673183
1764	4XZD	TYR	55	OH	6.821652
1765	4XZD	ARG	40	0	5.976479
1766	4XZD	TYR	75	OH	2.157519
1767	4XZD	ARG	40	NH1	4.694000
1768	4XZD	ARG	40	CZ	5.729084
1769	4XZD	THR	82	Ν	6.830323
1770	4XZD	HIS	81	NE2	5.692255
1771	4XZD	TYR	75	CZ	3.008552
1772	4XZD	ARG	40	CB	5.579011
1773	4XZD	HIS	81	ND1	3.821248
1774	4XZD	HIS	81	CG	4.565995
1775	4XZD	ARG	40	CA	6.464511
1776	4XZD	HIS	81	CB	4.599501
1777	4XZD	HIS	81	0	5.665049
1778	4XZD	HIS	81	С	5.860481
1779	4XZD	HIS	81	CA	5.409693
1780	4XZD	HIS	81	Ν	6.673948
1781	4XZD	HIS	81	CD2	5.669724
1782	4XZD	ARG	40	NH2	6.725728
1783	4Y1Q	ARG	40	С	6.665410
1784	4Y1Q	ARG	40	CA	6.429167
1785	4Y1Q	MET	147	CE	5.679400
1786	4Y1Q	PHE	77	CE1	6.104351
1787	4Y1Q	PHE	77	CD1	5.877343
1788	4Y1Q	HIS	81	ND1	5.426768
1789	4Y1Q	PHE	77	С	6.923090
1790	4Y1Q	PHE	77	CA	6.390460
1791	4Y10	PHE	77	Ν	6.768987
1792	4Y1Q	ARG	144	NH2	6.770579
1793	4Y1Q	ALA	75	CB	6.722226

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	çõ	de Annihe	5	2
	PDB II	Residue/	Residue	Atom	Distance
1794 1795 1796 1797	4Y1Q 4Y1Q 4Y1Q 4Y1Q 4Y1Q	ARG HIS PHE MET	144 81 50 147	NH1 NE2 CE1 SD	$5.258854 \\ 4.913699 \\ 6.381295 \\ 6.552120$
1798 1799 1800 1801 1802	4Y1Q 4Y1Q 4Y1Q 4Y1Q 4Y1Q 4Y1Q	ARG PHE ARG ARG HIS	$144 \\ 50 \\ 40 \\ 40 \\ 81$	CZ CD1 CZ NE CD2	6.232237 6.730337 5.467761 5.728993 4.049749
1803 1804 1805 1806 1807	4Y1Q 4Y1Q 4Y1Q 4Y1Q 4Y1Q 4Y1Q	ARG ARG HIS ARG	$40 \\ 144 \\ 40 \\ 81 \\ 40$	CD CD NH2 CE1 NH1	$\begin{array}{c} 5.070919\\ 6.916519\\ 6.530842\\ 5.656618\\ 4.412558\end{array}$
1808 1809 1810 1811 1812	4Y1Q 4Y1Q 4Y1Q 4Y1Q 4Y1Q	TYR HIS HIS HIS HIS	55 81 81 81 81	OH CG CB O C	6.699820 4.442063 4.506902 5.582811 5.991993
1813 1814 1815 1816 1817	4Y1Q 4Y1Q 4Y1Q 4Y1Q 4Y1Q	HIS HIS ARG ARG ARG	$81 \\ 81 \\ 40 \\ 40 \\ 144$	CA N CG CB NE	5.562055 6.810231 5.558394 5.504676 6.951212
1818 1819 1820 1821 1822	4Y1Q 5CN5 5CN5 5CN5 5CN5 5CN5	ARG HIS HIS HIS HIS	40 97 97 97 97	O NE2 CD2 ND1 CG	5.883335 5.499594 5.005579 6.673470 5.838143
1823 1824 1825 1826 1827	5CN5 5CN5 5CN5 5CN5 5CN5 5CN5	HIS VAL VAL VAL HIS	97 68 68 68 93	CB CG2 CB CA CD2	$\begin{array}{c} 6.296036 \\ 4.630775 \\ 5.712726 \\ 6.265042 \\ 3.277478 \end{array}$
1828	5CN 5	VAL	68	CG1	5.617449

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ø	Cos	re Annibe	5	-R)
	PDB IT	Residue.	Residue	Atom	Distance
1830	5CN5	HIS	93	NE2	2.229233
1831	5 CN5	HIS	97	CE1	6.485629
1832	5CN5	HIS	93	CE1	3.115222
1833	5CN5	HIS	93	ND1	4.267690
1834	$5\mathrm{CN5}$	HIS	93	CG	4.375619
1835	$5\mathrm{CN5}$	HIS	93	CB	5.799797
1836	5CN5	HIS	93	CA	6.543046
1837	5CN5	HIS	93	N	6.994836
1838	5CN5	SER	92	OG	6.529632
1839	$5\mathrm{CN5}$	HIS	64	CD2	5.654299
1840	$5\mathrm{CN5}$	HIS	64	ND1	6.583463
1841	$5\mathrm{CN5}$	HIS	64	CG	6.764052
1842	$5\mathrm{CN5}$	PHE	43	CZ	5.374377
1843	5CN5	HIS	64	NE2	4.650697
1844	$5\mathrm{CN5}$	PHE	43	CE2	5.429861
1845	$5\mathrm{CN5}$	\mathbf{PHE}	43	CE1	6.508868
1846	$5\mathrm{CN5}$	PHE	43	CD2	6.611682
1847	5CN5	LEU	104	CD2	6.517400
1848	5CN5	HIS	64	CE1	5.371125
1849	$5\mathrm{CN5}$	LEU	89	CD2	6.061927
1850	$5\mathrm{CN5}$	LEU	89	CD1	6.858400
1851	5CN5	LEU	89	0	6.902204
1852	5CN5	ILE	107	CD1	6.767432
1853	5CN5	ILE	99	CD1	6.420675
1854	$5\mathrm{CN5}$	ILE	99	CG2	6.718646
1855	$5\mathrm{CN5}$	ILE	99	CG1	5.812304
1856	$5\mathrm{CN5}$	ILE	99	CB	6.689823
1858	5GJ3	ARG	142	NH1	8.179276
1859	5GJ3	ARG	142	CZ	8.778676
1860	5GJ3	ARG	142	NE	8.979885
1861	5GJ3	ARG	142	CD	8.607854
1862	5GJ3	ARG	142	CG	9.355975
1863	5GJ3	ARG	142	CB	9.765637
1864	5GJ3	GLN	141	NE2	8.788580
1865	5GJ3	GLN	141	OE1	11.054586

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2	Co	de Numbe	<u>5</u> -	
	PDB ID	Residue	Residue	Atom	Distance
1866 1867 1868 1869	5GJ3 5GJ3 5GJ3 5GJ3	GLN ARG GLN ARG	141 241 141 241	CD CZ CG NH2	$\begin{array}{c} 9.936146 \\ 5.277230 \\ 9.984684 \\ 4.474480 \end{array}$
1870 1871 1872 1873 1874	5GJ3 5GJ3 5GJ3 5GJ3 5GJ3	TYR TYR ARG TYR TYR	140 140 241 239 140	OH CZ CG OH CE1	$\begin{array}{c} 6.129911 \\ 6.603546 \\ 6.052647 \\ 2.057052 \\ 7.188333 \end{array}$
1875 1876 1877 1878 1879	5GJ3 5GJ3 5GJ3 5GJ3 5GJ3 5GJ3	TYR TYR TYR TYR ARG	$ 140 \\ 140 \\ 140 \\ 140 \\ 241 $	CD2 CD1 CG CB CD	$7.736499 \\7.968897 \\8.235358 \\9.404934 \\4.883389$
1880 1881 1882 1883 1884	5GJ3 5GJ3 5GJ3 5GJ3 5GJ3 5GJ3	TYR TYR ARG TYR SER	239 239 241 239 124	CZ CE2 CB CD2 OG	$\begin{array}{c} 3.129005 \\ 4.244972 \\ 6.400599 \\ 5.423697 \\ 10.773736 \end{array}$
1885 1886 1887 1888 1889	5GJ3 5GJ3 5GJ3 5GJ3 5GJ3 5GJ3	TYR ARG TYR ARG TYR	239 241 239 241 239	CG NE CE1 NH1 CD1	$5.741268 \\ 5.431109 \\ 3.629462 \\ 6.278162 \\ 4.966826$
1890 1891 1892 1893 1894	5GJ3 5GJ3 5GJ3 5KZL 5KZL	SER ARG TYR HIS GLY	124 142 140 15 128	CB NH2 CE2 ND1 O	$\begin{array}{c} 9.703852\\ 9.446755\\ 6.893562\\ 4.362024\\ 4.717154\end{array}$
1895 1896 1897 1898 1899	5KZL 5KZL 5KZL 5KZL 5KZL	HIS GLY HIS GLY HIS	15 128 15 128 15	CG C CB CA O	$\begin{array}{c} 4.371613\\ 5.112458\\ 5.789015\\ 4.693838\\ 6.681930\\ \end{array}$
1900	5KZL	GLY	128	Ν	6.000414

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)
	0	Co	de Aunife	5	
	PDB JD	Residue	Residue	Atom	Distance
1901 1902 1903 1904	5KZL 5KZL 5KZL 5KZL	HIS HIS HIS VAL	15 15 15 124	C NE2 CA O	6.913432 2.263741 6.513236 6.607237 6.400501
1905 1906 1907 1908 1909	5KZL 5KZL 5KZL 5KZL 5KZL	PHE GLU PHE LEU LEU	195 19 195 127 127	CZ OE2 CE1 O C	$\begin{array}{c} 6.490501 \\ 5.803913 \\ 6.211680 \\ 6.670104 \\ 6.793273 \end{array}$
1910 1911 1912 1913 1914	5KZL 5KZL 5KZL 5KZL 5KZL	LEU GLY GLY SER SER	136 132 132 131 131	CD1 CA N OG CB	$\begin{array}{c} 6.422701 \\ 5.718532 \\ 5.691592 \\ 6.605168 \\ 5.777476 \end{array}$
1915 1916 1917 1918 1919	5KZL 5KZL 5KZL 5KZL 5KZL	SER SER HIS HIS	131 131 131 15 15	O C CA CE1 CD2	$\begin{array}{c} 6.902050\\ 6.282734\\ 6.625728\\ 3.221258\\ 3.260597\end{array}$
1920 1921 1922 1923 1925	5KZL 501L 501L 501L 501L 501L	ASP GLU ILE VAL VAL	129 148 227 152 197	N CG CG1 CG2 CG1	$\begin{array}{c} 6.318347 \\ 6.396575 \\ 6.973430 \\ 6.293389 \\ 6.392188 \end{array}$
1930 1931 1932 1933 1934	501L 501L 501L 501L 501L 501L	HIS HIS HIS HIS HIS	198 198 198 198 198	CE1 CD2 ND1 CG CA	$\begin{array}{c} 2.960033\\ 3.058523\\ 4.119976\\ 4.179972\\ 6.135598\end{array}$
1935 1936 1937 1938 1939	501L 501L 501L 501L 501L	HIS VAL ILE ILE LEU	198 197 222 222 171	N CB CD1 CB CD2	$\begin{array}{c} 6.367407 \\ 6.904140 \\ 5.454421 \\ 6.700079 \\ 5.871784 \end{array}$
1940	501L	LEU	171	CG	6.157864

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

		Coge	Annipe	Ş.	
	PDB ID	Residue	Resilue	Atom	Distance
1941 1942 1943 1944	501L 501L 501L 501L 501L	HIS ILE ILE THR	198 222 222 194	NE2 CG2 CG1 CG2	$\begin{array}{c} 2.008409\\ 5.717054\\ 6.228249\\ 4.863475\end{array}$
1945 1946 1947 1948 1949	501L 501L 501L 501L 501L 501L	THR THR THR THR THR	194 194 194 194 194	OG1 CB O C CA	$\begin{array}{c} 6.732273\\ 6.310660\\ 6.209525\\ 6.855242\\ 6.862712\end{array}$
1950 1951 1952 1953 1954	501L 501L 501L 501L 501L 501L	THR HIS GLU LEU GLU	230 198 148 171 148	CG2 CB OE2 CD1 CD	$\begin{array}{c} 6.574103 \\ 5.613320 \\ 6.340688 \\ 5.199565 \\ 6.584651 \end{array}$
1955 1956 1957 1958 1959	501M 501M 501M 501M 501M	THR THR HIS HIS THR	230 168 198 198 168	OG1 CB ND1 CG CA	$\begin{array}{c} 6.704437\\ 6.716431\\ 4.228786\\ 4.285748\\ 6.786040 \end{array}$
1960 1961 1962 1963 1964	501M 501M 501M 501M 501M	THR LYS LYS HIS HIS	168 167 167 198 198	N NZ CE CD2 N	$\begin{array}{c} 6.597112 \\ 2.394322 \\ 3.425470 \\ 3.148354 \\ 6.358799 \end{array}$
1965 1966 1967 1968 1969	501M 501M 501M 501M 501M	VAL LYS VAL ILE LYS	152 167 197 222 167	CG2 CG CB CG2 C	$\begin{array}{c} 6.250877 \\ 4.772075 \\ 6.924162 \\ 5.991532 \\ 6.677968 \end{array}$
1970 1971 1972 1973 1974	501M 501M 501M 501M 501M	LYS HIS THR THR THR	167 198 194 194 194	CA CB CG2 OG1 CB	6.982216 5.708988 5.053058 6.976250 6.495937
1975	5OIM	THR	194	U	6.143256

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	co co	de Numbe	5	.c ^e
	PDB .	Residu	Besiliu	Atom	Distall
1976	501M	THR	194	C	$\begin{array}{c} 6.825779 \\ 6.965214 \\ 6.167626 \\ 6.503399 \end{array}$
1977	501M	THR	194	CA	
1978	501M	HIS	198	CA	
1979	501M	THR	230	CG2	
1980	501M	LYS	167	CD	$\begin{array}{c} 4.069773\\ 6.337990\\ 5.394286\\ 5.544717\\ 5.830588\end{array}$
1981	501M	VAL	197	CG1	
1982	501M	THR	168	CG2	
1983	501M	ILE	222	CD1	
1984	501M	LYS	167	CB	
1985	501M	LYS	167	O	6.853283
1986	501M	ILE	222	CG1	6.462420
1987	501M	ILE	222	CB	6.965598
1988	501M	HIS	198	NE2	2.143583
1989	501M	HIS	198	CE1	3.099839
1990	5VEU	PHE	434	C	$\begin{array}{c} 6.660407 \\ 5.092847 \\ 5.879926 \\ 6.410294 \\ 5.718749 \end{array}$
1991	5VEU	GLY	443	N	
1992	5VEU	THR	309	OG1	
1993	5VEU	ILE	442	CG2	
1994	5VEU	PHE	434	CE1	
1995	5VEU	PHE	434	CD1	5.205940
1996	5VEU	ALA	447	CB	6.667315
1997	5VEU	PHE	434	CB	6.245330
1998	5VEU	PHE	434	CA	6.234979
1999	5VEU	VAL	369	CG2	6.886497
2001 2003 2004 2006 2007	5VEU 5VEU 5VEU 5VEU 5VEU	ASN ALA ALA MET PHE	$ \begin{array}{r} 440 \\ 305 \\ 305 \\ 444 \\ 434 \end{array} $	O CA C N O	$\begin{array}{c} 6.478484 \\ 6.262435 \\ 6.764115 \\ 5.803810 \\ 6.308836 \end{array}$
2008	5VEU	GLY	443	C	$5.543658 \\ 5.543488 \\ 6.762190 \\ 6.813521 \\ 6.140402$
2009	5VEU	GLY	443	CA	
2012	5VEU	MET	444	CB	
2016	5VEU	ILE	442	CB	
2017	5VEU	ILE	442	C	
2018	$5 \mathrm{VEU}$	$\rm ILE$	442	CA	6.175203

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	çõ	de Annale	Ş.	C.
	PDB II	Residue /	Residue	Atom	Distance
2019 2020 2022 2023	5VEU 5VEU 5VEU 5VEU	ILE CYS MET ALA	$ \begin{array}{r} 442 \\ 441 \\ 444 \\ 305 \end{array} $	N O CA O	$5.058254 \\ 5.807369 \\ 6.289599 \\ 6.691834$
2024 2025 2026 2027 2028	5VEU 5VEU 5VEU 5VEU 5VEU	CYS CYS CYS GLY PHE	441 441 441 443 434	CB C CA O CG	$\begin{array}{c} 3.500679 \\ 4.956818 \\ 4.203011 \\ 5.751295 \\ 6.214903 \end{array}$
2029 2032 2033 2034 2036	5VEU 5VEU 5VEU 5VEU 5VEU	ALA ASN THR PRO CYS	$305 \\ 440 \\ 309 \\ 433 \\ 441$	CB C CG2 O N	5.160255 6.339241 5.668263 6.574196 5.380733
2037 2038 2039 2040 2041	5VEU 5VEU 6A2J 6A2J 6A2J	CYS THR ALA VAL ALA	441 309 259 182 220	SG CB CA CG2 CB	$\begin{array}{c} 2.248175 \\ 6.139336 \\ 6.937825 \\ 6.605901 \\ 5.986896 \end{array}$
2042 2043 2044 2045 2046	6A2J 6A2J 6A2J 6A2J 6A2J	VAL GLY HIS THR GLY	182 179 216 178 179	CB N CG OG1 C	6.753078 5.777355 4.226515 6.735056 5.733550
2047 2048 2049 2050 2051	6A2J 6A2J 6A2J 6A2J 6A2J	GLY HIS ARG HIS HIS	179 216 217 216 216	CA ND1 NE2 CE1	$\begin{array}{c} 4.779391 \\ 4.184094 \\ 6.781589 \\ 2.092798 \\ 3.068636 \end{array}$
2052 2053 2054 2055 2056	6A2J 6A2J 6A2J 6A2J 6A2J	GLY HIS THR THR ILE	262 216 178 178 265	C CD2 O C CD1	6.042717 3.087929 6.870559 6.710930 5.663965
2057	6A2J	\mathbf{ILE}	265	CG1	6.879688

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	Ð	Çe	de Numbe	Ş.	Q ₁
	PDB II	Residue /	Residue	Atom	Distance
2058 2059 2060 2061	6A2J 6A2J 6A2J 6A2J 6A2J	HIS ALA HIS GLY	216 180 216 262	CB N C O	$5.641654 \\ 6.687029 \\ 6.355372 \\ 6.206764$
2062 2063 2064 2065 2066	6A2J 6A2J 6A2J 6A2J 6A2J 6A2J	HIS GLY VAL SER GLY	216 262 175 261 262	CA N O C CA	$\begin{array}{c} 6.587911 \\ 5.991880 \\ 6.183640 \\ 6.949581 \\ 5.042220 \end{array}$
2067 2068 2069 2070 2071	6A2J 6A2J 6A2J 6A2J 6A2J 6A2J	HIS HIS HIS HIS HIS	278 278 278 278 278 278	NE2 CE1 CD2 ND1 CG	$\begin{array}{c} 2.097124\\ 3.084577\\ 3.076644\\ 4.195480\\ 4.225202\end{array}$
2072 2073 2074 2075 2076	6A2J 6A2J 6A2J 6A2J 6A2J 6A2J	HIS HIS HIS HIS HIS	278 278 278 278 278 216	CB O C CA O	5.639445 6.179156 6.775178 6.627579 6.170588
2077 2078 2079 2080 2081	6A2J 6A2J 6A2J 6A2J 6A2J 6A2J	$egin{array}{c} { m GLN} \\ { m GLN} \\ { m GLN} \\ { m GLN} \\ { m GLN} \end{array}$	258 258 258 258 258	NE2 OE1 CD CG O	$\begin{array}{c} 4.668084\\ 6.633805\\ 5.618422\\ 5.742837\\ 5.679824\end{array}$
2082 2083 2084 2085 2086	6A2J 6A2J 6A2J 7C74 7C74	GLN VAL GLY ARG ARG	258 175 179 348 348	C CG1 O NH1 CZ	6.479023 6.221186 5.904093 6.634371 6.877092
2087 2088 2089 2090 2091	7C74 7C74 7C74 7C74 7C74 7C74	ARG ARG ARG ARG	348 348 348 348 348	NE CD CG CB O	$\begin{array}{c} 6.575349 \\ 5.975483 \\ 5.217041 \\ 5.945434 \\ 6.372874 \end{array}$
2092	7C74	ARG	348	Ν	6.760186

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	2 TP	. 2110	, due >	Ŷ	ance
	PDp.	Resil	Resil	Atoll	Distic
2093	7C74	HIS	109	CG	6.997955
2094	7C74	ASP	108	OD2	5.766923
2095	7C74	ASP	108	OD1	5.834435
2096	7C74	ASP	108	CG	5.892897
2097	7C74	ASP	108	CB	6.575347
2098	7C74	PHE	347	Ο	6.478230
2099	7C74	GLN	105	NE2	4.682805
2100	7C74	GLN	105	OE1	6.559310
2101	7C74	GLN	105	CD	5.387245
2102	7C74	GLN	105	CG	5.030685
2103	7C74	GLN	105	CB	5.976391
2104	7C74	HIS	109	CE1	5.947116
2105	7C74	GLN	105	CA	6.366871
2106	7C74	ASN	437	ND2	6.428557
2107	7C74	ASN	437	OD1	6.552144
2108	7C74	ASN	437	CG	6.979473
2109	7C74	HIS	109	CD2	5.815061
2110	7C74	GLU	258	OE2	5.841099
2111	7C74	GLU	258	OE1	6.188822
2112	7C74	GLU	258	CD	6.133430
2113	7C74	GLU	258	CG	6.870976
2114	7C74	HIS	351	NE2	2.443762
2115	7C74	HIS	351	CE1	3.562735
2116	7C74	HIS	351	CD2	3.209429
2117	7C74	ARG	348	С	6.561018
2118	7C74	HIS	351	CG	4.430495
2119	7C74	HIS	351	CB	5.763234
2120	7C74	HIS	351	CA	6.034276
2121	7C74	HIS	351	Ν	5.934872
2122	7C74	ARG	348	CA	5.823940
2123	7C74	HIS	109	NE2	5.050670
2124	7C74	GLY	350	С	6.439792
2125	7C74	GLY	350	CA	6.535492
2126	7C74	GLY	350	Ν	6.844489
2127	7C74	LEU	433	CD2	5.037286

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	Coj	le Numb	5.	
21287C74LEU433CD15.07706321297C74LEU433CG5.71226121307C74HIS351ND14.57463021317DMRARG348NE6.40862721327DMRARG348CG5.29550321337DMRASN437CG6.91430021347DMRHIS351NE22.00963221357DMRARG348O6.45460721367DMRHIS351CD23.02616121377DMRHIS351CA5.92890921387DMRGLY350O6.90383721397DMRGLY350C6.37662121407DMRGLY350CA6.80339521417DMRARG348NH16.67428121427DMRLEU433CD24.66745221437DMRLEU433CD15.41692921447DMRARG348CD5.92189921457DMRARG348CD5.92189921467DMRHIS109NE25.13547921487DMRASP108CG6.13786321497DMRASP108CB6.7412021507DMRARG348N6.75203621517DMRARG348N6.75203621527DMR		PDB ID	Residue	Residue	Atom	Distance
2132 7DMR ARG 348 CG 5.295503 2133 7DMR ASN 437 CG 6.914300 2134 7DMR HIS 351 NE2 2.009632 2135 7DMR ARG 348 O 6.454607 2136 7DMR HIS 351 CD2 3.026161 2137 7DMR HIS 351 CA 5.928909 2138 7DMR GLY 350 O 6.903837 2139 7DMR GLY 350 C 6.376621 2140 7DMR GLY 350 CA 6.803395 2141 7DMR GLY 350 CA 6.803395 2141 7DMR ARG 348 NH1 6.674281 2142 7DMR LEU 433 CD1 5.416929 2144 7DMR ARG 348 CD 5.921899 2145 7DMR ASP 108 OD2 6.081939 2146 7DMR HIS 109	2128 2129 2130 2131	7C74 7C74 7C74 7DMR	LEU LEU HIS ARG	433 433 351 348	CD1 CG ND1 NE	$5.077063 \\ 5.712261 \\ 4.574630 \\ 6.408627$
2137 7DMR HIS 351 CA 5.928909 2138 7DMR GLY 350 O 6.903837 2139 7DMR GLY 350 C 6.376621 2140 7DMR GLY 350 C 6.376621 2140 7DMR GLY 350 CA 6.803395 2141 7DMR ARG 348 NH1 6.674281 2142 7DMR LEU 433 CD2 4.667452 2143 7DMR LEU 433 CD1 5.416929 2144 7DMR ARG 348 CD 5.921899 2145 7DMR ARG 348 CD 5.921899 2145 7DMR ARG 348 CD 5.921899 2146 7DMR ASP 108 OD2 6.081939 2146 7DMR HIS 109 NE2 5.135479 2147 7DMR ASP 108 CG 6.137863 2149 7DMR ASP 108	2132 2133 2134 2135 2136	7DMR 7DMR 7DMR 7DMR 7DMR	ARG ASN HIS ARG HIS	348 437 351 348 351	CG CG NE2 O CD2	5.295503 6.914300 2.009632 6.454607 3.026161
2142 7DMR LEU 433 CD2 4.667452 2143 7DMR LEU 433 CD1 5.416929 2144 7DMR ARG 348 CD 5.921899 2145 7DMR ASP 108 OD2 6.081939 2146 7DMR HIS 351 ND1 4.107251 2147 7DMR HIS 109 NE2 5.135479 2148 7DMR ASP 108 CG 6.137863 2149 7DMR ASP 108 CG 6.137863 2149 7DMR ASP 108 CB 6.743120 2150 7DMR ARG 348 CA 5.825545 2151 7DMR ARG 348 N 6.752036 2152 7DMR ASN 437 ND2 6.613466 2153 7DMR ASN 437 ND2 6.613466 2153 7DMR ARG 348 CB 5.823186 2154 7DMR ARG 348<	2137 2138 2139 2140 2141	7DMR 7DMR 7DMR 7DMR 7DMR	HIS GLY GLY GLY ARG	351 350 350 350 348	CA O C CA NH1	5.928909 6.903837 6.376621 6.803395 6.674281
2147 7DMR HIS 109 NE2 5.135479 2148 7DMR ASP 108 CG 6.137863 2149 7DMR ASP 108 CB 6.743120 2150 7DMR ARG 348 CA 5.825545 2151 7DMR ARG 348 N 6.752036 2152 7DMR ASN 437 ND2 6.613466 2153 7DMR HIS 109 CE1 5.991157 2154 7DMR ARG 348 CB 5.823186 2155 7DMR GLU 258 CD 6.270833	2142 2143 2144 2145 2146	7DMR 7DMR 7DMR 7DMR 7DMR	LEU LEU ARG ASP HIS	433 433 348 108 351	CD2 CD1 CD OD2 ND1	$\begin{array}{c} 4.667452\\ 5.416929\\ 5.921899\\ 6.081939\\ 4.107251\end{array}$
2152 7DMR ASN 437 ND2 6.613466 2153 7DMR HIS 109 CE1 5.991157 2154 7DMR ARG 348 CB 5.823186 2155 7DMR GLU 258 CD 6.270833 2156 7DMR APC 248 C 6.613466	2147 2148 2149 2150 2151	7DMR 7DMR 7DMR 7DMR 7DMR	HIS ASP ASP ARG ARG	109 108 108 348 348	NE2 CG CB CA N	5.135479 6.137863 6.743120 5.825545 6.752036
2150 (DMR ARG 348 C 0.021359	$2152 \\ 2153 \\ 2154 \\ 2155 \\ 2156$	7DMR 7DMR 7DMR 7DMR 7DMR	ASN HIS ARG GLU ARG	437 109 348 258 348	ND2 CE1 CB CD C	$\begin{array}{c} 6.613466\\ 5.991157\\ 5.823186\\ 6.270833\\ 6.621339\end{array}$
2157 7DMR GLU 258 OE2 6.165783 2158 7DMR PHE 347 O 6.671472 2159 7DMR HIS 109 CD2 5.971041 2161 7DMR GLN 105 NE2 4.411977 2162 7DMR HIS 351 CG 4.145017	2157 2158 2159 2161 2162	7DMR 7DMR 7DMR 7DMR 7DMR	GLU PHE HIS GLN HIS	258 347 109 105 351	OE2 O CD2 NE2 CG	6.165783 6.671472 5.971041 4.411977 4.145017

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

	PDB ID	Residue	Code Residue Numb	et Atom	Distance
2164	7DMR	GLN	105	CG	5.072883
2165	7DMR	GLN	105	CB	5.884637
2166	7DMR	HIS	351	CE1	2.988168
2167	7DMR	GLN	105	CA	6.346229
2168	7DMR	HIS	351	Ν	5.854069
2169	7DMR	GLU	258	OE1	6.080170
2170	7DMR	ASP	108	OD1	6.101163
2171	7DMR	ASN	437	OD1	6.246283
2172	7DMR	GLN	105	CD	5.174413
2173	7DMR	ARG	348	CZ	6.732562
2174	7DMR	LEU	433	CG	5.591102
2175	7DMR	HIS	351	CB	5.553912

 Table B.9:
 HEM: All Distances, Atoms to Fe (continued)

 Table B.10:
 HEC: All Distances, Atoms to Fe

	B B	co silile	de sidue Numbe	ST.	. state
	$\mathcal{S}_{\mathcal{N}}$	Ber	Por	D _{PC}	\mathcal{O}_{rc}
1	1BBH	TYR	16	CG	3.768724
2	1BBH	TYR	16	CB	4.351793
3	1BBH	TYR	16	Ο	6.032159
4	1BBH	TYR	16	С	6.047776
5	1BBH	TYR	16	CA	5.394955
6	1BBH	TYR	16	Ν	6.524640
7	1BBH	CYS	121	CB	5.578638
8	1BBH	CYS	121	Ο	5.125611
9	1BBH	CYS	121	CA	5.746306
10	1BBH	CYS	124	\mathbf{C}	6.560352
11	1BBH	ARG	129	NH2	4.657992
12	1BBH	ARG	129	NH1	6.305764
13	1BBH	ARG	129	CZ	5.340426
14	1BBH	ARG	129	NE	5.207341
15	1BBH	ARG	129	CD	6.312478

	Ð	Ş.	,c ^e					
	EDB	Reside	Residu	Atom	Distal			
16	1BBH	TYR	58	ОН	6.554347			
17	1BBH	ARG	129	CB	6.340612			
18	1BBH	CYS	121	SG	6.411919			
19	1BBH	CYS	121	\mathbf{C}	5.823307			
20	1BBH	MET	19	CE	6.049470			
21	1BBH	HIS	125	NE2	2.019389			
22	1BBH	HIS	125	CE1	2.978473			
23	1BBH	HIS	125	CD2	3.006544			
24	1BBH	HIS	125	ND1	4.113194			
25	1BBH	HIS	125	CG	4.164334			
26	1BBH	HIS	125	CB	5.581871			
27	1BBH	HIS	125	CA	5.932117			
28	1BBH	CYS	124	SG	6.078930			
29	1BBH	CYS	124	CB	6.176895			
30	1BBH	HIS	125	Ν	5.955199			
31	1BBH	GLU	17	Ν	6.940695			
32	1BBH	TYR	16	OH	5.099061			
33	1BBH	TYR	16	CZ	4.254561			
34	1BBH	TYR	16	CE2	4.463795			
35	1BBH	TYR	16	CE1	3.833128			
36	1BBH	TYR	16	CD2	4.234962			
37	1BBH	TYR	16	CD1	3.540375			
38	1BBH	ARG	129	CG	6.371042			
39	1S56	TYR	33	OH	5.480355			
40	1S56	MET	77	0	6.944303			
43	1S56	HIS	81	CA	6.483579			
44	1S56	ILE	86	CD1	5.878780			
45	1S56	PHE	46	CZ	5.412014			
46	1S56	PHE	46	CE2	6.736095			
47	1S56	PHE	46	CE1	5.200905			
48	1S56	PHE	46	CD1	6.404458			
49	1S56	VAL	80	CG2	5.585206			
50	1S56	VAL	126	CG2	5.994128			
51	1S56	GLN	58	NE2	4.758584			
52	1S56	GLN	58	OE1	6.404068			

Table B.10: HEC: All Distances, Atoms to Fe (continued)

		Ċ	sde Aunibe	5	
	PDB ID	Residue	Residue	Atom	Distance
53	1856	VAL	126	CG1	5 591172
54	1S56	GLN	58	CD	5 918043
55	1S56	GLN	58	CG	6.942411
56	1S56	VAL	80	CB	6.460712
57	1S56	VAL	126	CB	6.503475
50	1956	XZA T	20	C	6 902701
08 50	1500	VAL	80		0.893701
09 60	1500	VAL HIS	94 91	UGI NE2	0.020107 0.126801
00 61	1550		01	NE2 CE1	2.150691
01 62	1550	HIS	01 81	CD2	3.000000 3.170857
02	0621	1115	01	OD2	5.179057
63	1S56	HIS	81	ND1	4.203043
64	1S56	HIS	81	CG	4.293691
65	1S56	HIS	81	CB	5.728508
67	1S56	LEU	54	CD2	5.985464
68	1S56	LEU	54	CD1	5.470210
69	1S56	HIS	81	Ν	6.718588
70	1S56	LEU	54	CG	6.386831
71	1S56	VAL	80	CG1	5.884109
72	1S56	TYR	33	CZ	6.589193
73	1S56	TYR	33	CE1	6.686496
74	1S56	MET	77	CE	5.896541
75	1S56	MET	77	SD	5.722004
76	1W2L	CYS	18	Ο	6.272480
77	1W2L	HIS	22	CE1	2.952828
78	1W2L	MET	76	CE	3.331224
79	1W2L	MET	76	SD	2.275594
80	1W2L	MET	76	CG	3.407807
81	1W2L	MET	76	CB	4.680531
82	1W2L	MET	76	Ċ	6.161429
83	1W2L	VAL	75	С	6.694753
84	1W2L	HIS	22	CG	4.165408
85	1W2L	HIS	22	NE2	2.019935
86	1W2L	ILE	61	CA	6.955555
87	1W2L	HIS	22	CD2	3.043257
88	1W2L	HIS	22	ND1	$4\ 110576$

Table B.10: HEC: All Distances, Atoms to Fe (continued)

		¢.	sde sumbe	5.	
	\mathbf{P}	C.	, e /		, ce
	PDB	Residu	Residu	Atom	Distall
89	1W2L	SER	60	СВ	6.743385
90	1W2L	HIS	22	CB	5.583109
91	1W2L	SER	60	\mathbf{C}	6.654549
92	1W2L	SER	60	Ο	6.014503
93	1W2L	HIS	22	CA	6.535062
94	1W2L	PRO	77	Ν	6.185218
95	1W2L	HIS	22	Ν	6.395979
96	1W2L	CYS	21	SG	6.487459
97	1W2L	CYS	21	CB	5.467826
98	1W2L	CYS	21	Ο	6.325560
99	1W2L	CYS	21	CA	6.553338
100	1W2L	MET	76	CA	5.067215
101	1W2L	CYS	18	CA	6.391381
102	1W2L	MET	76	Ν	5.901524
103	1W2L	PRO	32	CD	5.998967
104	1W2L	PRO	32	CG	6.506187
105	1W2L	PRO	32	0	6.656122
106	1W2L	CYS	18	SG	6.839096
107	1W2L	CYS	18	CB	6.394080
108	1W2L	PRO	32	Ν	6.669496
109	1W2L	PHE	34	CZ	5.340171
110	1W2L	CYS	18	С	6.877490
111	1W2L	GLY	31	С	6.810943
112	1W2L	GLY	31	CA	6.076145
113	1W2L	GLY	31	Ν	6.810543
114	1W2L	PHE	34	CE2	6.565580
115	1W2L	PRO	77	CD	5.434386
116	1W2L	\mathbf{PHE}	34	CE1	5.318068
117	1W2L	PRO	77	CG	6.595929
118	1W2L	VAL	75	0	6.812888
119	1W2L	CYS	21	С	6.283770
120	1W2L	TYR	80	OH	6.673428
121	1W2L	TYR	80	CZ	6.636632
122	1W2L	TYR	80	CE2	5.644992
123	1W2L	TYR	80	CD2	6.044178

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	Ð	Č ^C	de Numbe	5	c©
	PDB.	Residu	Residu	Atom	Distant
124	1W2L	PHE	34	CD1	6.518920
125	1W2L	ILE	61	CG1	6.723535
126	2BC5	LEU	10	CD1	5.360121
127	2BC5	LEU	10	CG	6.600328
128	2BC5	LEU	10	CB	6.501825
129	2BC5	ARG	106	CB	6.430360
130	2BC5	CYS	98	CA	5.637823
131	2BC5	MET	7	Ο	5.990477
132	2BC5	MET	7	CA	5.165634
133	2BC5	MET	7	Ν	6.214714
134	2BC5	HIS	102	CE1	3.116663
135	2BC5	HIS	102	CD2	2.899208
136	2BC5	HIS	102	ND1	4.164600
137	2BC5	HIS	102	CG	4.097269
138	2BC5	HIS	102	CB	5.487557
139	2BC5	HIS	102	CA	5.858937
140	2BC5	MET	7	CE	3.536180
141	2BC5	MET	7	SD	2.358383
142	2BC5	HIS	102	Ν	5.844368
143	2BC5	CYS	101	SG	6.042141
144	2BC5	MET	7	CG	3.612198
145	2BC5	ARG	106	NH2	6.317759
146	2BC5	LEU	3	CD1	6.557423
147	2BC5	MET	7	CB	4.392171
148	2BC5	CYS	101	CA	6.960467
149	2BC5	CYS	101	CB	6.016649
150	2BC5	ASN	99	Ν	6.936196
151	2BC5	CYS	98	SG	6.531669
152	2BC5	ARG	106	CG	6.496541
153	2BC5	CYS	98	0	5.191848
154	2BC5	CYS	98	CB	5.609865
155	2BC5	CYS	98	С	5.789260
156	2BC5	LEU	3	CG	6.801442
157	2BC5	CYS	98	Ν	6.983490
158	2BC5	LEU	3	0	6.869998

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	2	Ċ	ste Aunte	5	
	DDB ID	Residue	Residue	Atom	Distance
150	• •DC5	, ADC	۶ 106	> 	4.007410
109	2DC5	ANG	100	C	4.997419
100	2BC5		(101	C	0.023403
101	2BC5		101	C CZ	0.009800
162	2BC5	PHE	05 CF	CZ	6.206137 C 107CCC
163	2BC5	PHE	60	CE2	0.197000
164	2BC5	ARG	106	CZ	5.493429
165	2BC5	ARG	106	NE	5.524917
166	2BC5	ARG	106	CD	6.469516
167	2BC5	HIS	102	NE2	2.026659
168	2BH5	TYR	79	CD2	6.106726
169	2BH5	PHE	102	CG	6.993689
170	2BH5	PHE	102	CB	6.460544
171	2BH5	PHE	102	0	6.867527
172	2BH5	LEU	39	CD2	5.741572
173	2BH5	LEU	39	CD1	5.397242
174	2BH5	LEU	39	CG	6.047540
175	2BH5	CYS	15	CB	6.273959
176	2BH5	LYS	100	CE	3.042296
177	2BH5	LYS	100	CD	3.607500
178	2BH5	LYS	100	CA	6.970077
179	2BH5	PRO	37	CG	6.313316
180	2BH5	PRO	37	Ο	6.469326
181	2BH5	PRO	37	Ν	6.305872
182	2BH5	VAL	80	CG1	6.887770
183	2BH5	GLY	36	С	6.335983
184	2BH5	GLY	36	CA	5.611445
185	2BH5	GLY	36	Ν	6.430717
186	2BH5	LYS	100	NZ	1.893983
187	2BH5	PHE	102	CD2	6.622745
188	2BH5	HIS	19	NE2	1.936381
189	2BH5	HIS	19	CE1	2.876087
190	2BH5	HIS	19	CD2	2.985557
191	2BH5	HIS	19	ND1	4.006787
192	2BH5	HIS	19	CG	4.089234
193	2BH5	HIS	19	CB	5 514117

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	Ð	Çc	de Anno	Ş.	2
	PDB II	Residue	Residue	Atom	Distance
194	2BH5	HIS	19	CA	6.462897
195	2BH5	CYS	18	SG	6.561520
196	2BH5	CYS	18	CB	5.640711
197	2BH5	CYS	18	Ο	6.526211
198	2BH5	CYS	18	С	6.403953
199	2BH5	CYS	18	CA	6.713588
200	2BH5	LYS	100	CG	4.911215
201	2BH5	TYR	79	OH	5.222750
202	2BH5	LYS	100	CB	5.457412
203	2BH5	CYS	15	SG	6.744431
204	2BH5	HIS	19	Ν	6.399261
205	2BH5	CYS	15	Ο	6.140470
206	2BH5	CYS	15	\mathbf{C}	6.863968
207	2BH5	CYS	15	CA	6.544715
208	2BH5	PRO	83	CG	6.953188
209	2BH5	PRO	37	CD	5.721633
210	2BH5	TYR	79	CZ	5.692009
211	2BH5	TYR	79	CE2	5.119377
214	3EAH	TRP	144	CZ2	5.897099
216	3EAH	TRP	144	CE2	5.510177
217	3EAH	TRP	144	NE1	4.665090
218	3EAH	TRP	144	CD2	6.411670
219	3EAH	TRP	144	CD1	5.179002
220	3EAH	TRP	144	CG	6.224027
226	3EAH	ARG	153	CG	6.371859
228	3EAH	PHE	319	CE1	5.984587
229	3EAH	ARG	153	CA	6.956565
230	3EAH	CYS	150	CB	3.252402
231	3EAH	ARG	153	Ν	6.215203
232	3EAH	GLY	152	0	6.170630
233	3EAH	GLY	152	CA	5.467468
234	3EAH	GLY	152	Ν	5.042421
235	3EAH	GLY	152	С	5.828338
236	3EAH	VAL	151	CG1	6.226488
237	3EAH	VAL	151	CB	6.873725

Table B.10: HEC: All Distances, Atoms to Fe (continued)

		Ċ	ole Sumbe	5-	
	Þ	22°/	ne		all and a second s
	PDB-	Reside	Reside	Atom	Distar
239	3EAH	VAL	151	С	6.134121
240	3EAH	VAL	151	CA	6.217950
241	3EAH	VAL	151	Ν	5.067435
242	3EAH	CYS	150	SG	2.366787
243	3EAH	TRP	322	Ο	6.529256
244	3EAH	CYS	150	0	5.770370
245	3EAH	CYS	150	\mathbf{C}	4.908984
246	3EAH	CYS	150	CA	4.045023
247	3EAH	CYS	150	Ν	5.140972
248	3EAH	PHE	319	CD1	6.290067
250	3EAH	ARG	149	Ο	5.760264
251	3EAH	ARG	149	\mathbf{C}	5.846364
253	3EAH	ALA	147	CB	6.240842
254	3X15	PRO	25	Ο	6.636546
255	3X15	PRO	25	Ν	6.479568
256	3X15	GLY	24	С	6.579861
257	3X15	GLY	24	CA	5.838155
258	3X15	GLY	24	Ν	6.638694
259	3X15	HIS	16	CA	6.534752
260	3X15	CYS	15	SG	6.403522
261	3X15	CYS	15	Ο	5.850242
262	3X15	HIS	16	CG	4.160431
263	3X15	CYS	15	CA	6.400988
264	3X15	\mathbf{PHE}	44	CZ	6.164195
265	3X15	ILE	30	CD1	5.838773
266	3X15	PRO	25	CD	5.714118
267	3X15	HIS	16	CD2	3.036362
268	3X15	\mathbf{PHE}	44	CE2	5.884471
269	3X15	HIS	16	NE2	2.034065
270	3X15	HIS	16	CB	5.578454
271	3X15	HIS	16	Ν	6.429374
272	3X15	HIS	16	CE1	3.000765
273	3X15	CYS	15	CB	5.423303
274	3X15	CYS	15	С	6.071855
275	3X15	CYS	15	Ν	6.923760

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	Ð	Ç	de Numbe	5	-0,
	PDB Jr	Residue	Residue	Atom	Distance
276	3X15	ILE	30	CG1	6.986917
277	3X15	HIS	16	ND1	4.110256
278	3X15	CYS	12	SG	6.833584
279	3X15	CYS	12	CB	6.404249
280	3X15	CYS	12	0	5.833958
281	3X15	CYS	12	С	6.668691
282	3X15	CYS	12	CA	6.517488
283	3X15	PRO	25	CG	6.181197
284	$5 \mathrm{KPF}$	TYR	67	OH	4.782875
285	$5 \mathrm{KPF}$	PRO	71	CG	6.976183
286	5KPF	PHE	82	CD1	6.786896
287	$5 \mathrm{KPF}$	PHE	82	CG	6.214998
288	$5 \mathrm{KPF}$	PHE	82	CB	5.779976
289	$5 \mathrm{KPF}$	CYS	14	CB	6.411157
290	5KPF	HIS	18	NE2	1.983810
291	5KPF	TYR	67	CE2	5.484460
292	$5 \mathrm{KPF}$	LEU	32	CD2	6.023553
293	$5 \mathrm{KPF}$	LEU	32	CD1	5.964605
294	$5 \mathrm{KPF}$	LEU	32	CG	6.446949
295	5KPF	HIS	18	CE1	2.938552
296	5KPF	HIS	18	CD2	3.000836
297	$5 \mathrm{KPF}$	MET	80	CE	3.397915
298	$5 \mathrm{KPF}$	MET	80	SD	2.297111
299	$5 \mathrm{KPF}$	MET	80	CG	3.417184
300	5KPF	MET	80	CB	4.198483
301	5KPF	MET	80	Ο	6.571530
302	$5 \mathrm{KPF}$	ALA	81	Ν	6.517051
303	$5 \mathrm{KPF}$	MET	80	\mathbf{C}	6.052117
304	$5 \mathrm{KPF}$	MET	80	Ν	6.347030
305	5KPF	CYS	17	CB	5.421849
306	5KPF	CYS	17	0	6.060536
307	$5 \mathrm{KPF}$	CYS	17	С	6.151005
308	$5 \mathrm{KPF}$	CYS	17	CA	6.490182
309	$5 \mathrm{KPF}$	HIS	18	ND1	4.055792
310	5KPF	PRO	30	CG	6.282517

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	B D	idue Co	sde idne Munibe	ş.	xallee
	QDr.	Res	Bez.	Ato	Dist
311	5KPF	TYR	67	CZ	5.655118
312	$5 \mathrm{KPF}$	PRO	30	Ο	6.541035
313	$5 \mathrm{KPF}$	TYR	67	CE1	6.978646
314	$5 \mathrm{KPF}$	TYR	67	CD2	6.713518
315	$5 \mathrm{KPF}$	HIS	18	CG	4.117157
316	5KPF	PRO	30	Ν	6.286503
317	$5 \mathrm{KPF}$	GLY	29	\mathbf{C}	6.305107
318	$5 \mathrm{KPF}$	GLY	29	CA	5.523623
319	$5 \mathrm{KPF}$	GLY	29	Ν	6.329067
320	5KPF	HIS	18	CB	5.533621
321	5KPF	CYS	14	SG	6.823397
322	$5 \mathrm{KPF}$	PRO	30	CD	5.626056
323	$5 \mathrm{KPF}$	HIS	18	Ν	6.382298
324	$5 \mathrm{KPF}$	CYS	14	Ο	6.293139
325	5KPF	CYS	14	С	6.993506
326	5KPF	CYS	14	CA	6.635959
327	$5 \mathrm{KPF}$	PHE	82	CD2	6.463558
328	$5 \mathrm{KPF}$	LEU	68	CD2	6.268124
329	$5 \mathrm{KPF}$	HIS	18	CA	6.470604
330	5KPF	MET	80	CA	5.255860
331	5KPF	CYS	17	SG	6.369154
332	$5 \mathrm{LFT}$	PHE	82	CG	6.356580
333	$5 \mathrm{LFT}$	HIS	18	CB	5.560732
334	$5 \mathrm{LFT}$	CYS	17	CB	5.313012
335	$5 \mathrm{LFT}$	PRO	71	CG	6.983064
336	5LFT	PHE	82	CD2	6.810043
337	$5 \mathrm{LFT}$	PHE	82	CD1	6.825499
338	$5 \mathrm{LFT}$	PHE	82	CB	5.873708
339	$5 \mathrm{LFT}$	MET	80	Ν	6.425431
340	$5 \mathrm{LFT}$	LEU	32	CD1	5.961830
341	5LFT	HIS	18	ND1	4.090804
342	$5 \mathrm{LFT}$	HIS	18	CG	4.147251
343	$5 \mathrm{LFT}$	HIS	18	CA	6.509885
344	$5 \mathrm{LFT}$	MET	80	CB	4.296074
345	$5 \mathrm{LFT}$	CYS	17	SG	6.343958

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	Ð	cc e	de Autorité	5	~ ^{ce}
	PDB_	Residu	Residu	Atom	Distalt
346	5LFT	TYR	67	ОН	4.833680
347	$5 \mathrm{LFT}$	MET	80	CA	5.312127
348	$5 \mathrm{LFT}$	CYS	17	CA	6.413725
349	$5 \mathrm{LFT}$	TYR	67	CE2	5.462023
350	$5 \mathrm{LFT}$	PRO	30	CG	6.237908
351	$5 \mathrm{LFT}$	TYR	67	CE1	6.975655
352	$5 \mathrm{LFT}$	TYR	67	CD2	6.670309
353	$5 \mathrm{LFT}$	PRO	30	Ν	6.299143
354	$5 \mathrm{LFT}$	CYS	17	Ο	6.075895
355	$5 \mathrm{LFT}$	PRO	30	CD	5.671618
356	$5 \mathrm{LFT}$	HIS	18	CE1	2.966117
357	$5 \mathrm{LFT}$	HIS	18	CD2	3.029345
358	$5 \mathrm{LFT}$	LEU	32	CG	6.422071
359	$5 \mathrm{LFT}$	CYS	14	SG	6.824953
360	$5 \mathrm{LFT}$	CYS	14	Ο	6.214345
361	$5 \mathrm{LFT}$	CYS	14	С	6.937040
362	$5 \mathrm{LFT}$	CYS	14	CA	6.595268
363	$5 \mathrm{LFT}$	HIS	18	Ν	6.428173
364	$5 \mathrm{LFT}$	HIS	18	NE2	2.011687
365	$5 \mathrm{LFT}$	MET	80	CE	3.387584
366	$5 \mathrm{LFT}$	ALA	81	Ν	6.400723
367	$5 \mathrm{LFT}$	LEU	32	CD2	5.936545
368	$5 \mathrm{LFT}$	CYS	17	\mathbf{C}	6.136386
369	$5 \mathrm{LFT}$	GLY	29	С	6.350219
370	$5 \mathrm{LFT}$	MET	80	SD	2.302768
371	$5 \mathrm{LFT}$	MET	80	\mathbf{C}	6.108783
372	$5 \mathrm{LFT}$	LEU	68	CD2	6.315525
373	$5 \mathrm{LFT}$	GLY	29	CA	5.565072
374	$5 \mathrm{LFT}$	CYS	14	CB	6.420337
375	$5 \mathrm{LFT}$	GLY	29	Ν	6.229086
376	$5 \mathrm{LFT}$	MET	80	CG	3.456264
377	$5 \mathrm{LFT}$	TYR	67	CZ	5.655063
378	$5 \mathrm{LFT}$	PRO	30	0	6.508423
379	$5 \mathrm{LFT}$	MET	80	0	6.773883
380	$5\mathrm{T8W}$	LEU	32	CG	6.343288

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	, P	. Nie	de Nue Numbe	5	allce
	PDp>	Resit	Resit	Aton	Disto
381	$5\mathrm{T8W}$	PRO	30	CD	5.583175
382	$5\mathrm{T8W}$	PRO	30	Ο	6.544388
383	$5\mathrm{T8W}$	HIS	18	CE1	2.935155
384	$5\mathrm{T8W}$	GLY	29	\mathbf{C}	6.383245
385	$5\mathrm{T8W}$	GLY	29	CA	5.637934
386	$5\mathrm{T8W}$	HIS	18	CA	6.516657
387	$5\mathrm{T8W}$	HIS	18	CB	5.562349
388	$5\mathrm{T8W}$	HIS	18	ND1	4.065898
389	$5\mathrm{T8W}$	HIS	18	CD2	3.019310
390	$5\mathrm{T8W}$	HIS	18	CG	4.135070
391	$5\mathrm{T8W}$	GLY	29	Ν	6.438759
392	$5\mathrm{T8W}$	CYS	14	SG	6.847774
393	$5\mathrm{T8W}$	CYS	14	CB	6.488403
394	$5\mathrm{T8W}$	CYS	14	Ο	6.269192
395	$5\mathrm{T8W}$	CYS	14	\mathbf{C}	6.982236
396	$5\mathrm{T8W}$	CYS	14	CA	6.649977
397	$5\mathrm{T8W}$	MET	80	\mathbf{C}	6.035762
398	$5\mathrm{T8W}$	PHE	82	CD2	6.441516
399	$5\mathrm{T8W}$	PHE	82	CD1	6.999821
400	$5\mathrm{T8W}$	PHE	82	CG	6.253903
401	$5\mathrm{T8W}$	PHE	82	CB	5.693194
402	$5\mathrm{T8W}$	MET	80	CE	3.363519
403	$5\mathrm{T8W}$	PHE	82	Ν	6.830508
404	$5\mathrm{T8W}$	LEU	68	CD2	6.123569
405	$5\mathrm{T8W}$	MET	80	Ν	6.419434
406	$5\mathrm{T8W}$	ALA	81	Ν	6.484127
407	$5\mathrm{T8W}$	HIS	18	Ν	6.453279
408	$5\mathrm{T8W}$	MET	80	SD	2.281932
409	$5\mathrm{T8W}$	MET	80	CG	3.400381
410	$5\mathrm{T8W}$	MET	80	CB	4.224351
411	$5\mathrm{T8W}$	MET	80	0	6.542416
412	$5\mathrm{T8W}$	CYS	17	SG	6.407722
413	$5\mathrm{T8W}$	TYR	67	OH	4.837618
414	$5\mathrm{T8W}$	TYR	67	CZ	5.611609
415	$5\mathrm{T8W}$	HIS	18	NE2	1.986642

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	Þ	cc	de me Munite	5	ace.
	PDB	Residu	Residu	Atom	Distall
416	$5\mathrm{T8W}$	TYR	67	CE2	5.371411
417	$5\mathrm{T8W}$	TYR	67	CE1	6.915964
418	$5\mathrm{T8W}$	TYR	67	CD2	6.556593
419	$5\mathrm{T8W}$	CYS	17	CB	5.457714
420	$5\mathrm{T8W}$	PHE	82	CA	6.944552
421	$5\mathrm{T8W}$	CYS	17	0	6.255528
422	$5\mathrm{T8W}$	PRO	71	CG	6.909375
423	$5\mathrm{T8W}$	MET	80	CA	5.276377
424	$5\mathrm{T8W}$	PRO	30	CG	6.146734
425	$5\mathrm{T8W}$	PRO	30	Ν	6.278789
426	$5\mathrm{T8W}$	CYS	17	С	6.267167
427	$5\mathrm{T8W}$	LEU	32	CD2	5.869608
428	$5\mathrm{T8W}$	LEU	32	CD1	5.770229
429	$5\mathrm{T8W}$	CYS	17	CA	6.555563
430	6VDQ	TYR	310	CD2	6.539713
431	6VDQ	PHE	320	CZ	5.684848
432	6VDQ	PHE	320	CE2	6.813343
433	6VDQ	PHE	320	CD1	6.496707
434	6VDQ	HIS	274	NE2	2.166653
435	6VDQ	HIS	274	ND1	4.253244
436	6VDQ	HIS	274	CB	5.649324
437	6VDQ	HIS	274	Ο	6.849876
438	6VDQ	HIS	274	CA	6.565180
439	6VDQ	CYS	317	SG	6.205606
440	6VDQ	CYS	317	CB	6.256735
441	6VDQ	HIS	274	CG	4.254245
442	6VDQ	PHE	320	CE1	5.492677
443	6VDQ	TRP	271	CH2	6.160079
444	6VDQ	TRP	271	CZ3	5.419019
445	6VDQ	TRP	271	CE3	6.062835
446	6VDQ	HIS	313	NE2	2.114046
447	6VDQ	HIS	313	CE1	3.148000
448	6VDQ	HIS	313	CD2	3.023814
449	6VDQ	HIS	313	CG	4.198200
450	6VDQ	HIS	313	CA	6.547666

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	Ð	ne.	de hie Numbe	5	NCE
	208	Resil	Resilu	Atom	Distar
451	6VDQ	HIS	313	ND1	4.222791
452	6VDQ	HIS	313	CB	5.589302
453	6VDQ	LEU	238	CD1	6.268885
454	6VDQ	LEU	238	CD2	6.550286
455	6VDQ	ILE	278	CD1	5.058554
456	6VDQ	HIS	274	CD2	3.095567
457	6VDQ	TYR	310	CE2	6.866809
458	6VDQ	LEU	277	CD2	6.506868
459	6VDQ	TYR	310	Ο	6.950794
460	6VDQ	TYR	310	CA	6.715562
461	6VDQ	THR	309	CG2	6.344180
462	6VDQ	HIS	274	CE1	3.169279
463	6VDQ	ILE	278	CG1	5.659029
464	6VDQ	THR	309	0	6.542999
468	6WZA	LEU	3	CG	6.517323
472	6WZA	PHE	65	CZ	6.255083
473	6WZA	MET	7	CG	3.480925
474	6WZA	HIS	102	CE1	3.359365
475	6WZA	LEU	3	Ο	6.635333
477	6WZA	HIS	102	NE2	2.320735
479	6WZA	HIS	102	CD2	3.189854
480	6WZA	LEU	10	CG	6.542974
481	6WZA	LEU	10	CB	6.311147
482	6WZA	HIS	102	CB	5.753321
483	6WZA	MET	7	Ο	5.917221
484	6WZA	HIS	102	ND1	4.435137
485	6WZA	HIS	102	CA	6.044747
486	6WZA	HIS	102	Ν	6.038413
487	6WZA	CYS	101	SG	6.288607
488	6WZA	CYS	101	CB	6.321072
489	6WZA	HIS	102	CG	4.383045
490	6WZA	MET	7	CB	4.280261
491	6WZA	CYS	101	С	6.757441
492	6WZA	LEU	10	CD1	5.349237
493	6WZA	MET	7	Ν	6.100669

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	_	Ç	sile Autobe	5	
	A D	· Alle	. the	Ŷ	alle
	PDP.	Reste	Real	Aton	Diste
494	6WZA	MET	7	CA	5.062932
495	6WZA	MET	7	CE	3.596894
496	6WZA	CYS	98	CA	5.725516
497	6WZA	MET	7	SD	2.492649
500	6WZA	CYS	98	SG	6.371545
501	6WZA	PHE	65	CE1	6.113498
502	6WZA	ARG	106	CG	6.665139
503	6WZA	ARG	106	CB	6.598225
505	6WZA	CYS	98	CB	5.537743
506	6WZA	LEU	3	CD2	6.809700
507	6WZA	LEU	3	CD1	6.828342
512	6WZA	MET	7	\mathbf{C}	5.961312
513	6WZA	CYS	98	Ο	5.328723
515	6WZA	CYS	98	\mathbf{C}	5.907987
520	6XNK	TYR	67	CD2	6.665357
521	6XNK	LYS	79	CE	3.037596
522	6XNK	TYR	67	HH	3.927833
523	6XNK	HIS	18	CB	5.436966
524	6XNK	TYR	67	HE2	4.676997
525	6XNK	TYR	67	HD2	6.800590
526	6XNK	LYS	79	HZ3	2.551045
527	6XNK	LYS	79	HZ2	1.278291
528	6XNK	LYS	79	HZ1	1.995026
529	6XNK	HIS	18	HE1	3.048190
530	6XNK	HIS	18	HD2	3.102772
531	6XNK	TYR	67	OH	4.722027
532	6XNK	LYS	79	HD2	3.476914
533	6XNK	LYS	79	HG3	4.729055
534	6XNK	LYS	79	HG2	5.367169
535	6XNK	HIS	18	Н	6.514246
536	6XNK	LYS	79	HB2	5.945551
537	6XNK	HIS	18	CE1	2.845379
538	6XNK	HIS	18	CD2	2.886147
539	6XNK	LYS	79	NZ	1.966787
540	6XNK	HIS	18	CG	4.011526

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	Ð	Č ^e	de Numbe	ş.	مى
	PDB_F	Residue	Residue.	Atom	Distanc
541	6XNK	LYS	79	CD	3.847428
542	6XNK	LYS	79	CG	4.937653
543	6XNK	LYS	79	CB	6.116794
544	6XNK	HIS	18	CA	6.391595
545	6XNK	HIS	18	Ν	6.261778
546	6XNK	CYS	17	HB3	5.126034
547	6XNK	CYS	17	HB2	4.702452
548	6XNK	CYS	17	Н	6.789989
549	6XNK	CYS	17	SG	6.384909
550	6XNK	CYS	17	CB	5.389003
551	6XNK	CYS	17	0	6.219656
552	6XNK	VAL	83	HG22	6.016615
553	6XNK	CYS	17	CA	6.469164
554	6XNK	GLY	29	С	6.293575
555	6XNK	VAL	83	CG2	6.186346
556	6XNK	TYR	67	CZ	5.655553
557	6XNK	CYS	14	HB3	5.236316
558	6XNK	CYS	14	HB2	6.786422
559	6XNK	CYS	14	HA	5.764442
560	6XNK	ILE	75	HG22	6.120135
561	6XNK	ILE	75	HG21	6.372387
562	6XNK	CYS	14	CB	6.135863
563	6XNK	CYS	14	Ο	6.219435
564	6XNK	CYS	14	\mathbf{C}	6.877037
565	6XNK	CYS	14	CA	6.452203
566	6XNK	VAL	83	HG23	5.947690
567	6XNK	ILE	75	CG2	6.745580
568	6XNK	CYS	17	\mathbf{C}	6.147917
569	6XNK	CYS	14	SG	6.735718
570	6XNK	VAL	83	HG21	5.865730
571	6XNK	LYS	79	HB3	6.554712
572	6XNK	GLY	29	Н	6.329482
573	6XNK	PRO	30	HD3	6.090082
574	6XNK	PRO	30	HG3	6.407879
575	6XNK	PRO	30	HG2	5.676877

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	PDB ID	Residue Cold	e Residue Numbe	s Atom	Distance
576	6XNK	PRO	30	CD	5.582001
577	6XNK	PRO	30	0	6.463050
578	6XNK	LEU	32	HG	6.383475
579	6XNK	PRO	30	Ν	6.232837
580	6XNK	GLY	29	HA3	4.597674
581	6XNK	GLY	29	CA	5.523654
582	6XNK	GLY	29	Ν	6.320921
583	6XNK	THR	28	HG22	6.983672
584	6XNK	HIS	18	ND1	3.958847
585	6XNK	PRO	30	HD2	4.620017
586	6XNK	LYS	79	HE3	2.992305
587	6XNK	LYS	79	HE2	3.779843
588	6XNK	PRO	30	CG	6.129220
589	6XNK	HIS	18	HD1	4.737228
590	6XNK	HIS	18	HB3	5.911807
591	6XNK	HIS	18	HB2	5.544422
592	6XNK	HIS	18	NE2	1.863057
593	6XNK	GLY	29	HA2	5.656172
594	6XNK	TYR	67	CE2	5.467347
595	6XNK	LEU	32	HD23	6.635463
596	6XNK	LEU	32	HD22	6.414908
597	6XNK	LEU	32	HD21	5.128961
598	6XNK	LEU	32	HD13	6.311844
599	6XNK	LEU	32	HD12	6.462496
600	6XNK	LEU	32	HD11	4.997047
601	6XNK	LYS	79	HD3	4.436220
602	6XNK	HIS	18	HA	6.481555
603	6XNK	LEU	32	CD2	6.069933
604	6XNK	LEU	32	CD1	5.956808
605	6XNK	LEU	32	CG	6.498159
606	6XNK	TYR	67	CE1	6.991656

Table B.10: HEC: All Distances, Atoms to Fe (continued)

	PDB ID	Residue Co	de Resilue Munibe	st Atom	Distance
$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8	ALA CYS SER ARG	$ \begin{array}{r} 468 \\ 467 \\ 466 \\ 166 \\ 465 \\ \end{array} $	N C C NH1	6.774896 5.622542 6.380682 5.881161 6.220702
5 6 7 8 9 10	1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8	ASN CYS ASN ARG CYS ARG	463 467 465 97 467 97	SG C NH2 CB NH1	$\begin{array}{c} 0.329793\\ 2.739867\\ 6.729615\\ 4.715261\\ 3.891589\\ 5.483193\end{array}$
11 12 13 14 18	1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8	ARG ARG CYS ASN CYS	$97 \\ 97 \\ 467 \\ 465 \\ 467 \\ 467$	CZ NE O CG CA	$5.570784 \\ 6.762447 \\ 5.620446 \\ 6.852489 \\ 4.572359$
20 21 22 23 24	1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8	CYS GLN LYS LYS ASN	467 134 209 209 465	N OE1 NZ CE CB	5.409755 6.870508 4.794331 5.713878 6.117299
25 26 27 28 29	1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8 1ZJ8	TYR SER LYS LYS LYS	69 466 207 207 207	OH O NZ CE CD	$\begin{array}{c} 6.963349\\ 6.698175\\ 4.097986\\ 5.582174\\ 6.158637\end{array}$
30 31 32 33 34	1ZJ8 1ZJ8 1ZJ8 2AKJ 2AKJ	ASN ARG ASP LYS ARG	465 166 129 224 179	ND2 CZ OD1 CE NH2	$\begin{array}{c} 6.919459\\ 6.942231\\ 6.873987\\ 5.100975\\ 6.024724\end{array}$
35 36 37 38 39	2AKJ 2AKJ 2AKJ 2AKJ 2AKJ	ARG ARG ARG ARG THR	179 179 109 109 142	CZ NE NH1 CZ OG1	$\begin{array}{c} 6.635201 \\ 6.152980 \\ 4.778753 \\ 5.550228 \\ 6.814343 \end{array}$

Table B.11: SRM: All Distances, Atoms to Fe $\,$

	PDB ID	Residue /	Besidue /	Atom	Distance
40	2AKJ	GLY	487	Ν	6.536313
41	2AKJ	CYS	486	CB	3.620545
42	2AKJ	CYS	486	\mathbf{C}	5.475420
43	2AKJ	CYS	486	CA	4.297414
44	$2 \mathrm{AKJ}$	CYS	486	Ν	5.041386
45	2AKJ	SER	485	0	6.571770
46	2AKJ	SER	485	\mathbf{C}	6.120504
47	2AKJ	SER	485	Ν	6.820633
48	2AKJ	ASN	484	CG	6.359396
49	2AKJ	ASN	484	ND2	6.221626
50	2AKJ	ARG	109	NH2	5.430691
51	$2 \mathrm{AKJ}$	ASN	484	CB	5.666087
53	2AKJ	ARG	109	NE	6.736503
56	$2 \mathrm{AKJ}$	ASN	484	0	5.870993
57	$2 \mathrm{AKJ}$	ASN	484	\mathbf{C}	6.293813
58	2AKJ	CYS	486	SG	2.307671
59	2AKJ	ASN	484	CA	6.671473
60	2AKJ	LYS	224	NZ	4.716982
61	$2 \mathrm{AKJ}$	CYS	486	0	5.661149
62	2AKJ	LYS	224	CD	6.060923
63	2AOP	ASN	116	OD1	6.627004
64	2AOP	LYS	217	NZ	4.913889
65	2AOP	LYS	217	CE	6.056179
66	2AOP	LYS	215	NZ	4.501462
72	2AOP	ARG	83	NE	6.690501
76	2AOP	LYS	215	CE	5.533781
77	2AOP	LYS	215	CD	6.529398
78	2AOP	GLY	484	Ν	6.751562
79	2AOP	CYS	483	SG	2.690933
80	2AOP	CYS	483	CB	3.618036
81	2AOP	CYS	483	0	5.925288
82	2AOP	CYS	483	С	5.701845
83	2AOP	CYS	483	CA	4.490487
84	2AOP	CYS	483	Ν	5.131759
85	2AOP	GLY	482	0	6796617

Table B.11: SRM: All Distances, Atoms to Fe(continued)

			de milité	Ş.	
	PDB ID	Residue C	Residue Nu	Atom	Distance
86	2AOP	GLY	482	С	6.207889
87	2AOP	GLY	482	Ν	6.927668
88	2AOP	ASN	481	ND2	6.951972
89	2AOP	ASN	481	CG	6.943965
90	2AOP	ASN	481	CB	6.133620
91	2AOP	ARG	83	NH2	4.987487
92	2AOP	ARG	83	NH1	6.116129
93	2AOP	ARG	83	CZ	5.827773
94	2AOP	ASN	481	Ο	6.234228
95	2AOP	ARG	153	NE	6.898322
96	2AOP	GLN	121	OE1	6.832109
97	2AOP	ASN	481	\mathbf{C}	6.576284
101	3B0G	ALA	486	Ν	6.469408
102	3B0G	CYS	485	SG	2.376623
103	3B0G	CYS	485	CB	3.382867
104	3B0G	CYS	485	С	5.409016
105	3B0G	CYS	485	CA	4.239215
106	3B0G	CYS	485	Ν	5.000524
107	3B0G	THR	484	Ν	6.708903
108	3B0G	THR	484	Ο	6.455657
109	3B0G	THR	484	С	6.044003
110	3B0G	ASN	483	ND2	6.260093
111	3B0G	ASN	483	CB	5.581326
112	3B0G	ASN	483	Ο	5.719969
113	3B0G	ASN	483	С	6.160591
114	3B0G	ASN	483	CA	6.571598
115	3B0G	ASN	483	CG	6.338273
116	3B0G	THR	142	OG1	6.442796
117	3B0G	LYS	224	NZ	4.445729
118	3B0G	LYS	224	CE	5.810500
119	3B0G	LYS	224	CD	6.483612
120	3B0G	CYS	485	0	5.599037
121	3B0G	ARG	109	NH2	4.811922
122	3B0G	ARG	109	NH1	5.627262
123	3B0G	ARG	109	CZ	5.642075

Table B.11: SRM: All Distances, Atoms to Fe(continued)

	PDB ID	Residue C	ode Residue Numbe	st Atom	Distance
124	3B0G	ARG	109	NE	6.776761
125	3B0G	ARG	179	NH2	5.577161
126	3B0G	ARG	179	NH1	6.762778
127	3B0G	ARG	179	CZ	6.656967
133	3VKP	ASN	483	ND2	6.225943
134	3VKP	ASN	483	CA	6 569538
135	3VKP	ASN	483	CG	6.321808
136	3VKP	ALA	486	N	6.471195
137	3VKP	CYS	485	SG	2.364009
138	3VKP	CYS	485	CB	3.408761
139	3VKP	ASN	483	CB	5 554061
140	3VKP	CYS	485	0	5.618179
141	3VKP	CYS	485	$\tilde{\mathbf{C}}$	5.409845
142	3VKP	CYS	485	ČA	4.238243
143	3VKP	CYS	485	N	4.994489
144	3VKP	ASN	483	0	5.715338
145	3VKP	THR	484	\mathbf{C}	6.044406
146	3VKP	THR	484	Ν	6.724690
147	3VKP	LYS	224	NZ	4.409855
148	3VKP	ASN	483	\mathbf{C}	6.176402
149	3VKP	LYS	224	CD	6.342866
150	3VKP	LYS	224	CE	5.747677
151	3VKP	ARG	109	NH1	5.589424
152	3VKP	ARG	109	NE	6.832542
154	3VKP	ARG	109	NH2	4.835137
156	3VKP	THR	484	Ο	6.469202
157	3VKP	ARG	109	CZ	5.654695
158	3VKP	ARG	179	NH2	5.498837
159	3VKP	ARG	179	NH1	6.700761
160	3VKP	ARG	179	CZ	6.584269
161	3VKP	THR	142	OG1	6.428882
163	3VLX	ASN	483	CB	5.627120
164	3VLX	ASN	483	0	5.731451
165	3VLX	ASN	483	С	6.191851
166	3VLX	ASN	483	CA	6.613790

Table B.11: SRM: All Distances, Atoms to Fe(continued)

	2	Ċ	ste Aunte	5	
	2 TV	·due	·due	<i>x</i> ♥	ance
	B D _T ,	Reste	Best	Atol	Diste
168	3VLX	CYS	485	0	5.588423
169	3VLX	LYS	224	CE	5.854496
170	3VLX	CYS	485	С	5.403377
171	3VLX	LYS	224	NZ	4.491458
172	3VLX	CYS	485	CA	4.231946
173	3VLX	THR	142	OG1	6.455248
174	3VLX	CYS	485	Ν	4.995353
175	3VLX	THR	484	Ο	6.438040
176	3VLX	ARG	109	NH2	4.710989
177	3VLX	ARG	109	NH1	5.616270
178	3VLX	ARG	109	CZ	5.584909
179	3VLX	ARG	179	NH2	5.589544
180	3VLX	ARG	179	NH1	6.741095
181	3VLX	THR	484	Ν	6.735887
182	3VLX	ARG	179	CZ	6.667895
184	3VLX	LYS	224	CD	6.469108
187	3VLX	CYS	485	SG	2.376707
188	3VLX	CYS	485	CB	3.405528
189	3VLX	THR	484	\mathbf{C}	6.031697
190	3VLX	ASN	483	ND2	6.328925
191	3VLX	ARG	109	NE	6.717005
192	3VLX	ASN	483	CG	6.404243
193	3VLX	ALA	486	Ν	6.481752
194	3VLY	LYS	224	CE.A	5.823785
195	3VLY	LYS	224	CD.B	6.546563
196	3VLY	LYS	224	CD.A	6.611656
197	3VLY	THR	484	Ο	6.426986
198	3VLY	ARG	179	NH1	6.736275
199	3VLY	ARG	179	CZ	6.688035
200	3VLY	THR	484	Ν	6.766892
201	3VLY	CYS	485	CB	3.391003
202	3VLY	CYS	485	С	5.430226
203	3VLY	ASN	483	ND2	6.390751
204	3VLY	THR	484	С	6.049208
205	3VLY	ASN	483	CG	$6\ 488689$

Table B.11: SRM: All Distances, Atoms to Fe(continued)

	Ð	0°	de me Annie	5	ac ^e
	PDB_	Residu	Residu	Atom	Distalt
206	3VLY	ASN	483	CB	5.691757
207	3VLY	ASN	483	Ο	5.740901
208	3VLY	LYS	226	CE	6.147136
209	3VLY	CYS	485	SG	2.389916
210	3VLY	ARG	109	NH2	4.750497
211	3VLY	ARG	109	NH1	5.601167
212	3VLY	ARG	109	CZ	5.592635
213	3VLY	ARG	109	NE	6.737305
214	3VLY	ASN	483	С	6.218756
215	3VLY	THR	142	OG1	6.452740
216	3VLY	ASN	483	CA	6.667256
217	3VLY	ARG	179	NH2	5.624064
219	3VLY	CYS	485	CA	4.259251
221	3VLY	LYS	226	NZ	4.824118
224	3VLY	CYS	485	Ν	5.011053
227	3VLY	LYS	224	CE.B	5.780367
228	3VLY	CYS	485	Ο	5.614114
230	3VLY	LYS	224	NZ.B	4.516341
231	3VLY	LYS	224	NZ.A	4.549145
232	3VLY	ALA	486	Ν	6.503895
233	3VLZ	ARG	109	NH2	4.807371
234	3VLZ	ARG	109	NH1	5.527607
235	3VLZ	ARG	109	CZ	5.593093
236	3VLZ	ARG	109	NE	6.737774
237	3VLZ	LYS	224	NZ	4.481281
238	3VLZ	LYS	224	CE	5.919855
239	3VLZ	LYS	224	CD	6.403020
240	3VLZ	THR	142	OG1	6.394057
244	3VLZ	LYS	226	NZ	5.015077
248	3VLZ	ALA	486	Ν	6.507235
249	3VLZ	CYS	485	SG	2.447780
250	3VLZ	CYS	485	CB	3.377554
251	3VLZ	LYS	226	CE	6.267389
252	3VLZ	CYS	485	Ο	5.620470
253	3VLZ	CYS	485	\mathbf{C}	5.428716

Table B.11: SRM: All Distances, Atoms to Fe(continued)

		ĊS	ste Annibe	\$	
	Þ	ane/	ne ^{>}		ace.
	PDB	Reside	Residu	Atom	Distair
255	3VLZ	CYS	485	CA	4.263342
256	3VLZ	CYS	485	Ν	5.029616
257	3VLZ	ARG	179	CZ	6.755330
258	3VLZ	THR	484	Ο	6.426261
259	3VLZ	THR	484	С	6.045580
260	3VLZ	THR	484	Ν	6.840780
261	3VLZ	ASN	483	ND2	6.328586
262	3VLZ	ASN	483	CG	6.460443
263	3VLZ	ASN	483	CB	5.694910
264	3VLZ	ARG	179	NH2	5.698279
265	3VLZ	ASN	483	0	5.673531
266	3VLZ	ASN	483	\mathbf{C}	6.216891
267	3VLZ	ASN	483	CA	6.659583
268	3VLZ	ARG	179	NH1	6.844514
269	5H8V	LYS	276	CD	6.408382
273	5 H8 V	THR	156	OG1	6.490994
274	5H8V	TYR	106	OH	6.992106
275	5 H8 V	CYS	494	CB	6.918908
276	5H8V	GLN	161	NE2	6.725078
277	5 H8 V	LYS	276	NZ	4.815119
278	5 H8 V	ARG	124	NH2	4.739208
280	5 H8 V	ARG	124	CZ	5.660284
281	5 H8 V	ARG	124	NE	6.748784
283	5 H8 V	LYS	276	CE	6.192486
284	5 H8 V	ALA	545	Ν	6.528336
285	5 H8 V	CYS	544	SG	2.393592
286	5H8V	CYS	544	CB	3.390855
287	5H8V	CYS	544	Ο	5.393867
288	5H8V	CYS	544	\mathbf{C}	5.349018
289	5 H8 V	CYS	544	CA	4.227622
290	5 H8 V	CYS	544	Ν	5.011213
291	5H8V	GLY	543	0	6.455442
292	5H8V	GLY	543	С	5.986396
293	5 H8 V	GLY	543	CA	6.921074
294	5H8V	GLY	543	Ν	6.589065

 Table B.11: SRM: All Distances, Atoms to Fe (continued)

	PDB ID	Residue CC	de Resilue Munde	Atom	Distance
295 206	5H8V	ASN	542 102	ND2	6.949259
$290 \\ 297$	5H8V	ANG	195 542	CG	6 876195
298	5H8V	ASN	542	CB	5.939255
299	5 H8 V	ASN	542	Ο	6.143777
300	5 H8 V	ASN	542	С	6.353431
301	5 H8 V	ASN	542	CA	6.843112
302	5 H8 V	ARG	124	NH1	5.776669
306	5 H8 V	LYS	278	NZ	4.887668
307	5 H8 V	LYS	278	CE	6.104035

 Table B.11: SRM: All Distances, Atoms to Fe (continued)

 Table B.12:
 VERDOHEME: All Distances, Atoms to Fe

		مان	2 Millipe	Ş.	
	PDB ID	Residue	Besidue /	Atom	Distance
1	2ZVU	GLU	29	CA	6.550605
2	2ZVU	SER	142	CB	5.056016
3	2ZVU	SER	142	Ο	6.834314
4	2ZVU	SER	142	\mathbf{C}	5.791933
5	2ZVU	SER	142	CA	6.079128
6	2ZVU	PHE	207	CE2	5.564495
7	2ZVU	SER	142	Ν	6.689489
8	2ZVU	ALA	28	CB	6.962159
9	2ZVU	ASP	140	Ν	6.674210
10	2ZVU	GLY	139	С	5.456061
11	2ZVU	GLY	139	CA	4.644464
12	2ZVU	GLU	29	CB	5.706315
13	2ZVU	GLY	139	Ν	5.698486
14	2ZVU	GLU	29	Ν	6.647271
15	2ZVU	HIS	25	С	6.543308
16	2ZVU	GLU	29	OE2	6.184195
17	2ZVU	THR	135	0	6.765195

		Coc	e Numbe	5.	
	Ś		e		~C ^C
	PDB	Residu	Residu	Atom	Distall
18	2ZVU	GLU	29	OE1	6.021925
19	2ZVU	GLY	139	Ο	5.263773
20	2ZVU	GLU	29	CD	6.037613
21	2ZVU	HIS	25	NE2	2.139802
22	2ZVU	GLU	29	CG	6.403560
23	2ZVU	HIS	25	CE1	3.183117
24	2ZVU	HIS	25	CD2	3.046508
25	2ZVU	HIS	25	ND1	4.258746
26	2ZVU	HIS	25	CG	4.227114
27	2ZVU	GLY	143	Ο	6.662887
28	2ZVU	HIS	25	CB	5.615299
29	2ZVU	HIS	25	Ο	6.094479
30	2ZVU	LEU	138	0	6.138327
31	2ZVU	HIS	25	CA	6.320898
32	2ZVU	PHE	207	CD2	6.783590
33	2ZVU	GLY	144	Ν	5.902504
34	2ZVU	LEU	138	\mathbf{C}	6.361209
35	2ZVU	GLY	143	С	5.752517
36	2ZVU	GLY	143	CA	4.732326
37	2ZVU	GLY	143	Ν	4.596848
38	2ZVU	SER	142	OG	5.838988
39	2ZVU	PHE	207	CZ	5.764150
40	3MOO	HIS	20	ND1	4.253818
41	3MOO	HIS	20	CG	4.226474
42	3MOO	HIS	20	CB	5.622946
43	3MOO	HIS	20	0	6.158634
44	3MOO	HIS	20	С	6.569026
45	3MOO	HIS	20	CD2	3.045131
46	3MOO	HIS	20	CA	6.339432
47	3MOO	HIS	20	CE1	3.180759
48	3MOO	GLY	140	N	6.027517
49	3MOO	PHE	201	CZ	6.094516
50	3MOO	GLY	139	0	6.646135
51	3MOO	GLY	139	С	5.759376
52	3MOO	GLY	139	CA	4.646653

 Table B.12:
 VERDOHEME: All Distances, Atoms to Fe (continued)

		Ċ	de sumbe	Ş.	
	\mathbf{Q}	e/	e Ž		. ce
	PDB	Residu	Residu	Atom	Distall
53	3MOO	GLY	139	Ν	4.423907
54	3MOO	SER	138	OG	5.753269
55	3MOO	SER	138	CB	4.836803
56	3MOO	SER	138	Ο	6.682551
57	3MOO	SER	138	\mathbf{C}	5.593718
58	3MOO	VAL	131	Ο	6.796515
59	3MOO	SER	138	Ν	6.590947
61	3MOO	GLU	24	OE2	5.384554
63	3MOO	GLU	24	CD	6.389236
64	3MOO	GLU	24	CG	6.455965
65	3MOO	GLU	24	CB	6.226563
66	3MOO	ASP	136	Ν	6.778611
67	3MOO	GLY	135	Ο	5.140137
68	3MOO	GLY	135	С	5.487685
69	3MOO	GLY	135	CA	4.772529
70	3MOO	GLY	135	Ν	5.753634
72	3MOO	PHE	201	CE1	5.823481
73	3MOO	LEU	134	0	5.948257
74	3MOO	LEU	134	С	6.251889
75	3MOO	SER	138	CA	5.863632
76	3MOO	HIS	20	NE2	2.136783
77	3MOO	GLU	24	CA	6.921235
110	1TWN	SER	142	OG	6.202751
210	1TWN	SER	142	CB	5.278474
310	1TWN	SER	142	0	6.521440
410	1TWN	SER	142	\mathbf{C}	5.608074
510	1TWN	SER	142	CA	6.079325
610	1TWN	SER	142	Ν	6.525137
71	1TWN	GLY	139	0	4.637782
81	1TWN	GLY	139	CA	4.688754
91	1TWN	GLY	139	Ν	5.966079
101	1TWN	ASP	140	Ν	6.273979
111	$1 \mathrm{TWN}$	LEU	138	\mathbf{C}	6.568643
121	1TWN	GLU	29	OE2	5.896688
131	1TWN	GLY	139	С	5.078584

 Table B.12:
 VERDOHEME: All Distances, Atoms to Fe (continued)

	\mathbf{Q}	~ ~			. ce
	208	Residu	Residu	Atom	Distalt
141	1TWN	GLU	29	CD	6.031038
151	1TWN	GLU	29	CG	5.943908
161	1TWN	GLU	29	OE1	6.622662
171	1TWN	THR	135	0	6.865192
181	1TWN	PHE	207	CZ	6.131186
191	1TWN	HIS	25	NE2	2.125073
201	1TWN	HIS	25	CE1	3.033509
211	1TWN	HIS	25	CD2	3.170330
221	1TWN	HIS	25	ND1	4.177685
231	$1 \mathrm{TWN}$	HIS	25	CG	4.274450
241	1TWN	HIS	25	CB	5.705445
251	1TWN	HIS	25	Ο	6.316837
261	1TWN	HIS	25	С	6.784392
271	1TWN	HIS	25	CA	6.472605
281	$1 \mathrm{TWN}$	PHE	207	CE2	5.765491
291	$1 \mathrm{TWN}$	PHE	207	CD2	6.894472
301	1TWN	LEU	138	0	6.230476
311	1TWN	GLY	144	Ν	6.024952
321	1TWN	GLY	143	Ο	6.416018
331	1TWN	GLY	143	\mathbf{C}	5.619207
341	1TWN	GLY	143	CA	4.451235
351	1TWN	GLY	143	Ν	4.438393
361	$1 \mathrm{TWR}$	HIS	25	ND1	4.147733
371	1TWR	SER	142	CA	6.432405
381	$1 \mathrm{TWR}$	ASP	140	Ν	6.553790
391	$1 \mathrm{TWR}$	GLY	139	0	4.904275
401	$1 \mathrm{TWR}$	GLY	139	С	5.360673
411	$1 \mathrm{TWR}$	GLY	139	CA	4.975291
421	1TWR	GLY	139	Ν	6.237301
431	1TWR	LEU	138	0	6.380104
441	$1 \mathrm{TWR}$	LEU	138	С	6.779436
451	$1 \mathrm{TWR}$	HIS	25	CB	5.956100
461	1TWR	GLU	29	OE2	5.747718
471	1TWR	GLU	29	OE1	6.976207
481	1TWR	GLU	29	CD	6.414442

 Table B.12:
 VERDOHEME: All Distances, Atoms to Fe (continued)

		Cos	Je Numbe	5.	
	PDB ID	Residue	Residue	Atom	Distance
491	1TWR	GLU	29	CG	6.930261
501	1TWR	PHE	207	CZ	6.416044
511	1TWR	PHE	207	CE2	5.938056
521	1TWR	PHE	207	CD2	6.989446
551	$1 \mathrm{TWR}$	HIS	25	NE2	2.360871
561	$1 \mathrm{TWR}$	HIS	25	CD2	3.578572
571	1TWR	HIS	25	CG	4.495311
581	1TWR	HIS	25	Ο	6.244702
591	1TWR	HIS	25	С	6.776047
60	1TWR	HIS	25	CA	6.610832
611	1TWR	GLY	143	\mathbf{C}	6.723686
62	$1 \mathrm{TWR}$	GLY	143	CA	5.540835
631	1TWR	GLY	143	Ν	5.245156
641	1TWR	SER	142	CB	5.353755
651	1TWR	SER	142	\mathbf{C}	6.273485
661	1TWR	SER	142	Ν	6.885149
671	1TWR	SER	142	OG	6.030291
681	1TWR	HIS	25	CE1	2.909126

Table B.12: VERDOHEME: All Distances, Atoms to Fe (continued)

B.3.2 Mean Distances of Each Residue in Binding Pocket

PDB JD	Residue Muniber	Residue Code	Mean Distance
1N45	28	ALA	6.981230
2CJ0	31	ALA	5.440871
2CPO	31	ALA	5.505123
2J18	31	ALA	5.457126
1SY2	42	ALA	6.006055
3MVF 3TGC	$\begin{array}{c} 42\\ 42\end{array}$	ALA ALA	5.827660 6.033598

 Table B.13:
 HEM: Mean Distances of Each Residue in Pocket
DB ID	- esidue Number	code Code	Near Distance
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₩°	A.	Úr.
2O6P	49	ALA	6.356063
4B8N	54	ALA	6.390793
1B5M	67	ALA	5.797296
1ICC	67	ALA	6.085233
1U9U	67	ALA	6.016697
2CJ0	71	ALA	6.531120
2CPO	71	ALA	6.539227
2J18	71	ALA	6.477348
3HX0	71	ΑΙΑ	6 230664
4NL5	71	ALA	6 805378
4Y10	75	ALA	6.722226
1P3T	121	ALA	6.382367
3SIK	138	ALA	6.231014
307N	166	ΔΤ.Δ	6 007060
3 GZI	160		5 223004
6A2I	105	ALA	6 687029
2RH I	100	ALA	6 261711
6A2J	220	ALA	5.986896
CADI	250		C 027005
0A2J 4MVD	259	ALA ALA	0.937823
4MYD	202		0.381193 6 207700
4001F	295 208		0.201799 5.672036
4130	298 305	ALA	5 305272
410&	000		0.000212
5VEU	305	ALA	6.219660
1ZVI 2OCN	412	ALA	6.481380
2Q6N	442	ALA	6.935846 C CC7215
5VEU 4120	447	ALA	0.007315
413Q	448	ALA	0.441232
4JET	40	ARG	5.660400
4XZD	40	ARG	5.892195
4Y1Q	40	ARG	5.725205
3SIK	54	ARG	6.090293
2FC2	61	ARG	6.072553
2FC2	65	ARG	6.459491
4CDP	100	ARG	5.360373

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

BD	sidue Number	aidue Code	an Distance
L.V.	Res	B.C.	The.
2.I0P	102	ARG	5 002395
4UZV	105	ARG	6.689489
4MF9	112	ARG	5.056393
5GJ3	142	ARG	9.016294
4JET	144	ARG	6.239587
4XZD	144	ARG	6.335714
4Y1Q	144	ARG	6.425880
2BHJ	193	ARG	5.745098
2BHJ	197	ARG	6.221230
4I3Q	212	ARG	6.392849
1QHU	214	ARG	6.588734
1QJS	214	ARG	6.249190
6A2J	217	ARG	6.781589
5GJ3	241	ARG	5.542517
2IIZ	242	ARG	5.236889
1SI8	333	ARG	5.247624
2IPS	348	ARG	6.336679
7C74	348	ARG	6.274279
7DMR	348	ARG	6.250958
1IPH	411	ARG	5.321024
1ZVI	414	ARG	5.799426
1ZVI	418	ARG	6.259544
3HX9	7	ASN	9.030558
4NL5	7	ASN	5.402231
1B2V	41	ASN	6.894251
1DK0	41	ASN	6.870425
1P3T	118	ASN	6.625279
1SI8	127	ASN	6.666708
1IPH	201	ASN	6.396844
2BHJ	364	ASN	6.955669
2IPS	437	ASN	6.276979
7C74	437	ASN	6.653391
7DMR	437	ASN	6.591349
5VEU	440	ASN	6.408862
4I3Q	441	ASN	6.139159

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

BID	ailue Number	aidue Code	an Distance
SV.	$\mathcal{B}_{\mathcal{O}_{\mathcal{O}}}$	$\mathcal{S}_{\mathcal{O}_2}$	Ac
1P3T	27	ASP	6.267807
2E2Y	64	ASP	6.865050
2IPS	108	ASP	5.870986
7C74	108	ASP	6.017401
7DMR	108	ASP	6.266021
5KZL	129	ASP	6.318347
1N45	140	ASP	6.389011
1VGI	140	ASP	6.566393
2HZ	151	ASP	5.861207
4CDP	191	ASP	6.789427
2J0P	194	ASP	6.862392
1QHU	203	ASP	6.920576
1QJS	203	ASP	6.878437
2HZ	284	ASP	6.598336
2CJ0	29	CYS	4.390905
2CPO	29	CYS	4.443549
2J18	29	CYS	4.359887
2FC2	62	CYS	4.482879
1P3T	113	CYS	6.881310
2BHJ	194	CYS	4.487497
1ZVI	415	CYS	4.181834
2Q6N	436	CYS	4.305637
5VEU	441	CYS	4.349464
4I3Q	442	CYS	4.085782
2IPS	105	GLN	5.981590
7C74	105	GLN	5.667218
7DMR	105	GLN	5.517249
5GJ3	141	GLN	9.940999
2R7A	253	GLN	6.081153
6A2J	258	GLN	5.803666
4MYP	292	GLN	6.537566
5KZL	19	GLU	5.803913
1N45	29	GLU	6.277510
1VGI	29	GLU	6.279863
501L	148	GLU	6.440638

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

2 ID	. die Number	. die Code	1. Distance
5Dr.	Beste	Rest	Megr
2CJ0	183	GLU	5.716050
2CPO	183	GLU	5.799506
2J18	183	GLU	5.722472
1QHU 1OIS	225 226	GLU	6.177350 6.465511
2IPS	220	GLU	6 388898
211 S 7C74	258	GLU	6 258582
7DMR	258	GLU	6.172262
2Q6N	439	GLU	6.270464
1ZVI	592	GLU	6.601349
1B5M	41	GLY	5.388127
1ICC	41	GLY	5.723853
1U9U	41	GLY	5.723510
1B5M	42	GLY	6.533917
1ICC	42	GLY	6.657462
1U9U	42	GLY	6.689632
4B8N	50	GLY	5.464969
4B8N	51	GLY	6.462950
1B5M	62	GLY	6.365897
2FC2	64	GLY	5.882725
1P3T	116	GLY	5.737222
1P3T	120	GLY	4.843774
5KZL	128	GLY	5.130966
5KZL	132	GLY	5.705062
1N45	139	GLY	5.251379
1VGI	139	GLY	5.155470
1N45	143	GLY	5.882948
IVGI	143	GLY	5.279720
1VGI	144	GLY	5.974807
2R7A	170	GLY	5.922307
6A2J	179	GLY	5.548597
2BHJ 9EC9	196	GLY	5.667103
2602	233	GLI	0.01/0/0
6A2J	262	GLY	5.820895
41VI Y M	291	GLY	0.024099

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

P	ALE NUMBER	me Code	Distance
PDB.	Resil	Resid	Megar
2Q6N	299	GLY	6.518431
4I3Q 2IPS	$\frac{306}{350}$	GLY GLY	6.573103 6.712596
7C74	350	GLY	6.606591
7DMR	350	GLY	6.694618
2BHJ	365	GLY	6.617587
1ZVI	417	GLY	5.404983
2Q6N	438	GLY	5.615678
5VEU	443	GLY	5.482822
4I3Q	444	GLY	5.222394
1ZVI	586	GLY	6.997972
5KZL	15	HIS	4.819650
1P3T	23	HIS	4.573926
1N45	25	HIS	4.545004
1VGI	25	HIS	4.646180
1B2V	32	HIS	4.667618
1DK0	32	HIS	4.556145
1DKH	32	HIS	5.099382
1B5M	39	HIS	4.456809
1ICC	39	HIS	4.542187
1U9U	39	HIS	4.589294
4B8N	48	HIS	4.479396
1SI8	54	HIS	5.688888
1SY2	59	HIS	4.045387
3MVF	59	HIS	4.066882
3TGC	59	HIS	4.100823
1B5M	63	HIS	4.211990
1ICC	63	HIS	4.451283
1U9U	63	HIS	4.417873
2SPL	64	HIS	5.889080
5CN5	64	HIS	5.804727
4B8N	71	HIS	4.416116
3VP5	72	HIS	4.371971
3HX9	75	HIS	4.195649
4NL5	75	HIS	4.473936

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

PDB ID	Resilue Number	Residue Code	Mean Distance
4JET 4XZD 4Y1Q	, 81 81 81	HIS HIS HIS	5.381133 5.263108 5.294289
1B2V	83	HIS	5.366599
1DK0	83	HIS	5.314133
1DKH	83	HIS	5.223800
2CN4	83	HIS	5.251875
3QZN	83	HIS	4.660500
2E2Y	93	HIS	$\begin{array}{c} 4.514535\\ 4.578545\\ 4.575365\\ 5.917056\\ 5.997752\end{array}$
2SPL	93	HIS	
5CN5	93	HIS	
2E2Y	97	HIS	
2SPL	97	HIS	
5CN5	97	HIS	5.966408
4UZV	106	HIS	4.502311
2IPS	109	HIS	5.924623
7C74	109	HIS	5.952700
7DMR	109	HIS	5.699226
2VEB	120	HIS	$\begin{array}{c} 4.471709\\ 4.599066\\ 4.427156\\ 5.713777\\ 6.496593\end{array}$
3QZZ	120	HIS	
3ZJS	120	HIS	
1IPH	128	HIS	
2O6P	134	HIS	
3VP5	149	HIS	$\begin{array}{c} 4.350835\\ 6.973181\\ 4.417630\\ 4.310325\\ 4.305405\end{array}$
3QZN	168	HIS	
4CDP	193	HIS	
2J0P	196	HIS	
5O1L	198	HIS	
501M 4MF9 1QHU 1QJS 6A2J	198 209 213 213 213 216	HIS HIS HIS HIS HIS	$\begin{array}{c} 4.392715\\ 4.606487\\ 4.734866\\ 4.696712\\ 4.601722\end{array}$
1QHU	222	HIS	$6.740296 \\ 4.533607$
2IIZ	224	HIS	

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

PDB ID	Residue Munber	Residue Code	Mean Distance
1QHU	265	HIS	$\begin{array}{r} 4.200094 \\ 4.484379 \\ 4.655598 \end{array}$
1QJS	266	HIS	
6A2J	278	HIS	
2IPS	351	HIS	$\begin{array}{c} 4.125792 \\ 4.494179 \\ 4.201640 \\ 9.558396 \\ 5.756873 \end{array}$
7C74	351	HIS	
7DMR	351	HIS	
3HX9	9	ILE	
4NL5	9	ILE	
4JET	30	ILE	$\begin{array}{c} 6.988601 \\ 5.365972 \\ 5.758462 \\ 6.106378 \\ 5.517060 \end{array}$
2O6P	48	ILE	
4B8N	55	ILE	
2FC2	63	ILE	
2E2Y	68	ILE	
3VP5	71	ILE	$\begin{array}{c} 6.407016\\ 6.130795\\ 6.223033\\ 6.410362\\ 6.704700\end{array}$
2E2Y	99	ILE	
2SPL	99	ILE	
5CN5	99	ILE	
2E2Y	107	ILE	
2SPL	$     107 \\     107 \\     111 \\     114 \\     116   $	ILE	6.505472
5CN5		ILE	6.767432
4UZV		ILE	5.897899
2Q6N		ILE	6.560571
2VEB		ILE	6.573571
3QZZ	116	ILE	6.472356
3ZJS	116	ILE	6.518950
2O6P	121	ILE	6.852081
3SIK	129	ILE	6.189129
3SIK	131	ILE	6.481115
2VEB	137	ILE	$\begin{array}{c} 6.361213\\ 6.393964\\ 6.315026\\ 5.866079\\ 6.384201 \end{array}$
3QZZ	137	ILE	
3ZJS	137	ILE	
3QZN	159	ILE	
3QZN	164	ILE	
2BHJ	$195\\214$	ILE	6.216303
2FC2		ILE	6.545905

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

PDB ID	Residue Muniber	Residue Code	Mean Distance
501L 501M 2IIZ	222 222 222 225	ILE ILE ILE	6.024951 6.241067 6.430481
501L 4CDP 2J0P 6A2J 4MF9	227 252 255 265 268	ILE ILE ILE ILE	$\begin{array}{c} 6.973430 \\ 6.178209 \\ 6.197370 \\ 6.271826 \\ 6.092502 \end{array}$
2Q6N 2Q6N 5VEU 4I3Q 2CJ0	$363 \\ 435 \\ 442 \\ 443 \\ 32$	ILE ILE ILE LEU	6.794813 6.531691 6.119535 5.985023 5.757197
2CPO	$32 \\ 32 \\ 46 \\ 46 \\ 46 \\ 46$	LEU	5.913058
2J18		LEU	5.760472
1B5M		LEU	5.848737
1ICC		LEU	5.941384
1U9U		LEU	5.958763
1SY2	57	LEU	$\begin{array}{c} 6.145372 \\ 6.242544 \\ 6.147624 \\ 6.456250 \\ 6.429830 \end{array}$
3MVF	57	LEU	
3TGC	57	LEU	
4B8N	70	LEU	
1B2V	77	LEU	
1DK0	77	LEU	$\begin{array}{c} 6.502332\\ 6.345588\\ 6.548785\\ 6.352126\\ 6.167984\end{array}$
1DKH	77	LEU	
2CN4	77	LEU	
4UZV	79	LEU	
2E2Y	89	LEU	
2SPL	89	LEU	$\begin{array}{c} 6.446644 \\ 6.607510 \\ 6.499175 \\ 6.801707 \\ 6.384225 \end{array}$
5CN5	89	LEU	
4CDP	90	LEU	
4UZV	102	LEU	
2E2Y	104	LEU	
2SPL	104	LEU	6.518599
5CN5	104	LEU	6.517400

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

B ID	dille Muniber	aithe Code	an Distance
S.V.	Res	Ros	Me
1P3T	119	LEU	6.709401
1SY2	123	LEU	5.902915
3MVF	123	LEU	5.891492
3TGC	123	LEU	5.908675
5KZL	127	LEU	6.731689
1SY2	133	LEU	6.241713
3MVF	133	LEU	6.341681
3TGC	133	LEU	6.315080
5KZL	136	LEU	6.422701
1N45	138	LEU	6.717099
1VGI	138	LEU	6.110494
2VEB	142	LEU	6.331426
3QZZ	142	LEU	6.534813
3ZJS	142	LEU	6.289922
1N45	147	LEU	6.115862
2R7A	167	LEU	6.508147
501L	171	LEU	5.743071
2IIZ	255	LEU	6.075868
2R7A	257	LEU	5.559331
2IIZ	286	LEU	5.566800
2IPS	417	LEU	6.792313
2IPS	433	LEU	5.458537
7C74	433	LEU	5.275537
7DMR	433	LEU	5.225161
2Q6N	437	LEU	5.864970
3VP5	145	LYS	5.832567
501M	167	LYS	5.125712
3QZN	84	MET	6.337233
1B2V	140	MET	6.218846
1DK0	140	MET	6.185917
1DKH	140	MET	6.519598
$2\mathrm{CN4}$	140	MET	5.816277
4JET	147	MET	5.810508
4XZD	147	MET	6.297861
4Y1Q	147	MET	6.115760

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

Ð	me Munber	oue code	Distance
PDB	Reside	Residu	Mean
4UZV	151	MET	5.908059
4CDP 2J0P	241 $244$	MET MET	$6.340896 \\ 6.821994$
4MF9	257	MET	6.826627
5VEU	444	MET	6.285199
4I3Q	445	MET	5.975507
3HX9	23	PHE	8.679990
$4\mathrm{NL5}$	23	PHE	5.580423
2SPL	29	PHE	6.129536
1B5M	35	PHE	5.848448
1ICC	35	$\mathbf{PHE}$	6.276818
1U9U	35	PHE	6.094672
2SPL	43	PHE	5.815167
$5\mathrm{CN5}$	43	PHE	5.981197
4B8N	44	PHE	6.120000
4JET	50	$\mathbf{PHE}$	6.875792
4Y1Q	50	PHE	6.555816
4UZV	53	PHE	6.941930
2CJ0	57	PHE	6.484645
2CPO	57	PHE	6.473913
2J18	57	PHE	6.534471
1B5M	58	PHE	6.096500
1ICC	58	PHE	6.182239
4B8N	67	PHE	6.248829
4UZV	67	PHE	5.984317
1SY2	68	PHE	6.098374
3MVF	68	PHE	6.146303
3TGC	68	PHE	6.152796
2VEB	74	PHE	6.405384
3QZZ	74	PHE	6.218919
3ZJS	74	PHE	6.270262
3VP5	76	PHE	6.844578
4JET	77	PHE	6.310922
4XZD	77	PHE	6.275751
4Y1Q	77	PHE	6.412846

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

Ð	me Muniber	code	Distance
PDB	Reside	Reside	Mean
2VEB	93	PHE	5.810118
3QZZ	93	PHE	6.033470
3ZJS	93	PHE	5.922481
2CJ0	103	PHE	6.182880
2CPO	103	PHE	6.396792
2J18	103	PHE	6.235843
3VP5	112	PHE	6.509162
4UZV	119	PHE	5.820671
1SI8	132	PHE	6.553242
1SI8	140	PHE	5.575451
2VEB	145	PHE	6.211153
3QZZ	145	PHE	6.192963
3ZJS	145	PHE	6.059949
1P3T	181	PHE	5.974488
2CJ0	186	PHE	5.833496
2CPO	186	PHE	5.891089
2J18	186	PHE	5.882819
5KZL	195	PHE	6.351090
2J0P	199	PHE	6.468406
1IPH	206	PHE	6.665963
1N45	207	PHE	5.975984
1VGI	207	PHE	6.238995
1IPH	214	PHE	5.767678
2FC2	231	PHE	6.129726
4CDP	243	PHE	5.994465
2J0P	246	PHE	6.155004
2IIZ	257	PHE	5.749045
4MF9	259	PHE	5.680334
7C74	347	PHE	6.478230
7DMR	347	PHE	6.671472
2BHJ	363	PHE	5.980185
2Q6N	429	PHE	6.192258
5VEU	434	PHE	6.084164
4I3Q	435	PHE	6.161681
1ZVI	584	PHE	6.009975

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

Ð	he Munber	code	Distance
PDB	Resid	Reside	Mean
2CJ0	28	PRO	6.127671
2CPO	28	PRO	6.018197
2J18	28	PRO	6.103023
2CJ0	30	PRO	5.960531
2CPO	30	PRO	6.017188
2J18	30	PRO	5.936382
1B5M	40	PRO	6.032548
1ICC	40	PRO	6.016737
1U9U	40	PRO	6.149502
4B8N	49	PRO	6.182011
1SI8	315	PRO	6.539721
1IPH	393	PRO	6.703993
2Q6N	428	PRO	6.945175
5VEU	433	PRO	6.574196
4I3Q	434	PRO	6.893037
1B2V	42	SER	6.443386
1DK0	42	SER	6.540219
1DKH	42	SER	6.070312
2FC2	59	SER	6.581787
2E2Y	92	SER	6.454585
2SPL	92	SER	6.650791
5CN5	92	SER	6.529632
1P3T	117	SER	5.531584
5GJ3	124	SER	10.238794
5KZL	131	SER	6.438631
1N45	142	SER	6.525024
1VGI	142	SER	5.700272
4MYP	205	SER	6.655356
6A2J	261	SER	6.949581
1QHU	266	SER	6.680148
1QJS	267	SER	6.730283
1IPH	414	SER	6.728176
1DK0	33	THR	6.991008
2R7A	52	THR	5.945515
2E2Y	67	THR	6.891096

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

Ð	The Muniber	Code	Distance
PDB	Residu	Residu	Meon
3VP5	68	THR	6.164947
4XZD	82	THR	6.830323
1B2V	84	THR	6.798527
1DK0	84	THR	6.799510
1DKH	84	THR	6.267175
$2\mathrm{CN4}$	84	THR	6.804573
1SY2	121	THR	6.333312
3MVF	121	THR	6.595150
3TGC	121	THR	6.343084
3VP5	130	THR	5.980868
1N45	135	THR	6.713859
1VGI	135	THR	6.883314
501M	168	THR	6.373467
6A2J	178	THR	6.772182
501L	194	THR	6.305648
5O1M	194	THR	6.409916
4MF9	208	THR	6.202558
501L	230	THR	6.574103
5O1M	230	THR	6.603918
2Q6N	302	THR	5.748396
4I3Q	309	THR	6.214341
5VEU	309	THR	5.895842
2E2Y	43	TRP	5.845537
2FC2	56	TRP	5.737975
3QZZ	60	TRP	6.491833
3ZJS	60	TRP	6.366999
3HX9	66	TRP	7.852796
$4\mathrm{NL5}$	66	TRP	6.235302
2R7A	68	TRP	6.192116
1QHU	171	TRP	6.147194
1QJS	171	TRP	6.211700
2VEB	185	TRP	5.717992
3QZZ	185	TRP	6.111800
3ZJS	185	TRP	5.960798
2BHJ	188	TRP	6.049049

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

2 ID	. due Number	. hte Code	n Distance
501	Rest	Rest	Neor
2CJ0	213	TRP	6.764355
2J18	213	TRP	6.782850
2FC2	234	TRP	6.837576
1QHU	267	TRP	5.987630
$1 \mathrm{QJS}$	268	TRP	6.230710
2BHJ	366	TRP	6.764735
1ZVI	409	TRP	5.660275
1ZVI	587	TRP	6.843603
1SY2	40	TYR	5.887937
3MVF	40	TYR	6.759408
3TGC	40	TYR	5.967215
2O6P	52	TYR	6.682161
2CN4	55	TYR	6.806239
4JET	55	TYR	6.877273
4XZD	55	TYR	6.821652
4Y1Q	55	TYR	6.699820
1SY2	58	TYR	6.964531
1U9U	58	TYR	6.232812
3ZJS	61	TYR	6.548411
2R7A	67	TYR	4.159993
1B2V	75	TYR	4.251885
1DK0	75	TYR	4.346840
1DKH	75	TYR	4.792830
$2\mathrm{CN4}$	75	TYR	4.345054
4JET	75	TYR	4.420106
4XZD	75	TYR	4.329954
3QZN	87	TYR	6.251729
3VP5	91	TYR	6.574739
2O6P	132	TYR	4.055037
2O6P	136	TYR	5.148558
3SIK	136	TYR	4.260470
1B2V	137	TYR	6.232518
1DK0	137	TYR	6.186950
1DKH	137	TYR	6.409147
$2\mathrm{CN4}$	137	TYR	6.142879

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

PD         Reside         Cole         Reside         Cole           3SIK         140         TYR         5.120136           5GJ3         140         TYR         7.520130           3QZN         170         TYR         5.718488           IQHU         204         TYR         6.239544           IQJS         204         TYR         6.235721           5GJ3         209         TYR         4.170326           4MYP         280         TYR         4.465249           MYP         280         TYR         3.976560           IPH         415         TYR         3.976560           IPH         415         TYR         4.170326           ISI8         337         TYR         3.976560           IPT         26         VAL         6.716946           ISY2         36         VAL         6.479806           3TGC         36         VAL         6.479806           IDK0         37         VAL         5.400635           IDKH         37         VAL         5.400636           IDKH         37         VAL         5.42521           IDK0         37         VAL				
N         N         N         N           3SIK         140         TYR         5.120136           5GJ3         140         TYR         7.520130           3QZN         170         TYR         5.718488           1QHU         204         TYR         6.239544           1QJS         204         TYR         6.235721           5GJ3         239         TYR         4.170326           4MYP         280         TYR         4.465249           4MYP         280         TYR         4.465249           4MYP         280         TYR         4.218561           IPH         415         TYR         4.218561           IP3T         26         VAL         6.716946           SY2         36         VAL         6.479806           3TGC         36         VAL         6.425221           DK0         37         VAL         5.425221           DK0         37         VAL         5.425221           IDKH         37         VAL         5.425221           IDK         37         VAL         5.425221           IDK         37         VAL         5.425221	0 ^B .II	2 esitue Mumber	2 esitive Code	Near Distance
3SIK       140       TYR       5.120136         5GJ3       140       TYR       7.520130         3QZN       170       TYR       5.718488         1QHU       204       TYR       6.239544         1QJS       204       TYR       6.239544         1QJS       204       TYR       6.225721         5GJ3       239       TYR       4.470326         4MYP       280       TYR       4.465249         4MYP       289       TYR       5.900895         1SI8       337       TYR       3.976560         1PH       415       TYR       4.218561         1P3T       26       VAL       6.179806         3TGC       36       VAL       6.479806         3TGC       36       VAL       5.402653         1B2V       37       VAL       5.42521         1DK0       37       VAL       5.425221         1DK0       37       VAL       5.42522         1DK1       37       VAL       5.42522         1DV0       45       VAL       5.846522         1U9U       45       VAL       6.238869         4NL5 <td><u>\</u></td> <td>Ŷ</td> <td>Ŷ</td> <td>$\beta_{\star}$</td>	<u>\</u>	Ŷ	Ŷ	$\beta_{\star}$
5GJ3       140       TYR       7.520130         3QZN       170       TYR       5.718488         1QHU       204       TYR       6.239544         1QJS       204       TYR       6.225721         5GJ3       239       TYR       4.165249         4MYP       280       TYR       4.665249         4MYP       289       TYR       5.900895         1SI8       337       TYR       3.976560         1IPH       415       TYR       4.218561         1P3T       26       VAL       6.479806         3TGC       36       VAL       6.135653         1B2V       37       VAL       5.42521         1DK0       37       VAL       5.425221         1DK0       37       VAL       5.042973         1B5M       45       VAL       6.238869         1USI       53       VAL       6.238869         9HX9 <td>3SIK</td> <td>140</td> <td>TYR</td> <td>5.120136</td>	3SIK	140	TYR	5.120136
3QZN       170       TYR       5.718488         1QHU       204       TYR       6.239544         1QJS       204       TYR       6.225721         5GJ3       239       TYR       4.170326         4MYP       280       TYR       4.465249         4MYP       280       TYR       5.900895         ISIS       337       TYR       4.21561         1P3T       26       VAL       6.716946         1SY2       36       VAL       6.479806         3TGC       36       VAL       6.435653         1B2V       37       VAL       5.42521         1DK0       37       VAL       5.462973         1B5M       45       VAL       5.642973         1B5M       45       VAL       5.90035         1U9U       45       VAL       5.992035         1U9U       45       VAL       6.03869         3HX9       53       VAL       6.03869         3HX9       53       VAL       6.03941         1DCC       61       VAL       5.726742         109U       61       VAL       5.556498         4B8N	5GJ3	140	TYR	7.520130
1QHU       204       TYR       6.239544         1QJS       204       TYR       6.225721         5GJ3       239       TYR       4.170326         4MYP       280       TYR       4.465249         4MYP       289       TYR       5.900895         1SIS       337       TYR       3.976560         1PH       415       TYR       4.218561         1P3T       26       VAL       6.716946         1SY2       36       VAL       6.439806         3TGC       36       VAL       6.135653         1B2V       37       VAL       5.42521         1DK0       37       VAL       5.42521         1DK0       37       VAL       5.42521         1DK0       37       VAL       5.42521         1DK0       37       VAL       5.42521         1DCC       45       VAL       5.642973         1B5M       45       VAL       5.846522         1ICC       45       VAL       6.03869         3HX9       53       VAL       6.03869         3HX9       53       VAL       6.03696         2SPL       <	3QZN	170	TYR	5.718488
LQJS         204         TYR         6.225721           5GJ3         239         TYR         4.170326           4MYP         280         TYR         4.465249           4MYP         289         TYR         5.900895           1SI8         337         TYR         3.976560           1IPH         415         TYR         4.218561           1P3T         26         VAL         6.479806           SY2         36         VAL         6.135653           1B2V         37         VAL         5.42521           DK0         37         VAL         5.425221           IDK0         37         VAL         5.46522           IICC         45         VAL         6.500194           ISI8         53         VAL         6.03868	1OHU	204	TYR	6.239544
SJ3       239       TYR       4.170326         4MYP       280       TYR       4.465249         4MYP       289       TYR       5.900895         1SI8       337       TYR       3.976560         1IPH       415       TYR       4.218561         1P3T       26       VAL       6.716946         1SY2       36       VAL       6.479806         3TGC       36       VAL       6.135653         1B2V       37       VAL       5.425221         1DK0       37       VAL       5.425221         1DK0       37       VAL       5.4462973         1B5M       45       VAL       5.846522         1ICC       45       VAL       5.846523         1U9U       45       VAL       5.902035         1U9U       45       VAL       6.238869         3HX9       53       VAL       6.238869         3HX9       53       VAL       6.074911         1ICC       61       VAL       6.074911         1ICC       61       VAL       5.98014         5CN5       68       VAL       5.98014         5CN5	1QJS	204	TYR	6.225721
4MYP       280       TYR       4.465249         4MYP       289       TYR       5.900895         1SI8       337       TYR       3.976560         1IPH       415       TYR       4.218561         IP3T       26       VAL       6.716946         ISY2       36       VAL       6.479806         3TGC       36       VAL       6.135653         IB2V       37       VAL       5.42521         1DK0       37       VAL       5.425221         1DK0       37       VAL       5.426973         1B5M       45       VAL       5.992035         1U9U       45       VAL       6.00194         SIS       53       VAL       6.038869         9HX9       53       VAL       6.07421         1U9U       61       VAL       6.076368         2SPL	5GJ3	239	TYR	4.170326
4MYP       289       TYR       5.900895         ISI8       337       TYR       3.976560         IIPH       415       TYR       4.218561         IP3T       26       VAL       6.716946         ISY2       36       VAL       6.479806         3TGC       36       VAL       5.42521         DK0       37       VAL       5.425221         IDK0       37       VAL       5.425221         IDK0       37       VAL       5.425221         IDK0       37       VAL       5.425221         IDK0       37       VAL       5.642973         IB5M       45       VAL       5.992035         IU9U       45       VAL       6.238869         3HX9       53       VAL       6.238869         3HX9       53       VAL       6.074911         IICC       61       VAL       5.726742         1U9U	4MYP	280	TYR	4.465249
ISI8       337       TYR       3.976560         IIPH       415       TYR       4.218561         IP3T       26       VAL       6.716946         ISY2       36       VAL       6.479806         3TGC       36       VAL       6.135653         IB2V       37       VAL       5.42521         IDK0       37       VAL       5.42973         IB5M       45       VAL       5.642973         IB5M       45       VAL       5.642973         IDV0       45       VAL       5.09194         ISI8       53       VAL       6.238869         3HX9       53       VAL       6.238869         3HX9       53       VAL       6.074911         ICC       61       VAL       5.726742         IU9U       61       VAL       5.556498         SPL       68<	4MYP	289	TYR	5.900895
1316       337       111       3.570000         1IPH       415       TYR       4.218561         1P3T       26       VAL       6.716946         1SY2       36       VAL       6.479806         3TGC       36       VAL       6.135653         1B2V       37       VAL       5.425221         1DK0       37       VAL       5.425221         1DK0       37       VAL       5.425221         1DK0       37       VAL       5.425221         1DK0       37       VAL       5.42573         1B5M       45       VAL       5.642973         1B5M       45       VAL       5.992035         1U9U       45       VAL       6.030194         ISI8       53       VAL       6.238869         3HX9       53       VAL       6.002943         4NL5       53       VAL       5.909472         1B5M       61       VAL       5.726742         U9U       61       VAL       5.786014         5CN5       68       VAL       5.98014         5CN5       68       VAL       5.990472         3QZZ	1010	227	TVD	2 076560
111 1       413       111 1       413       111 1         1P3T       26       VAL       6.716946         1SY2       36       VAL       6.479806         3TGC       36       VAL       6.135653         1B2V       37       VAL       5.425221         1DK0       37       VAL       5.40636         1DKH       37       VAL       5.642973         1B5M       45       VAL       5.846522         1ICC       45       VAL       5.846522         1ICC       45       VAL       5.992035         1U9U       45       VAL       6.238869         3HX9       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       5.909472         1B5M       61       VAL       5.726742         1U9U       61       VAL       5.726742         1U9U       61       VAL       5.756498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.917494         3QZZ       89       VAL       5.927268	1510 1IDH	007 115	TVP	5.970500 4 218561
11 51       20       VAL       0.110940         1SY2       36       VAL       6.479806         3TGC       36       VAL       6.135653         1B2V       37       VAL       5.425221         1DK0       37       VAL       5.400636         1DKH       37       VAL       5.642973         1B5M       45       VAL       5.846522         1ICC       45       VAL       6.500194         ISI8       53       VAL       6.238869         3HX9       53       VAL       6.238869         3HX9       53       VAL       6.074911         IICC       61       VAL       6.074911         IICC       61       VAL       5.909472         1B5M       61       VAL       6.074911         IICC       61       VAL       5.726742         1U9U       61       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.927268         3ZJS       89       VAL       5.927268      3ZJS       89 <td>111 11 1 D 2 T</td> <td>415</td> <td>VAT</td> <td>4.210001</td>	111 11 1 D 2 T	415	VAT	4.210001
3TGC       36       VAL       6.135653         1B2V       37       VAL       5.425221         1DK0       37       VAL       5.400636         1DKH       37       VAL       5.642973         1B5M       45       VAL       5.846522         1ICC       45       VAL       5.992035         1U9U       45       VAL       6.238869         3HX9       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       6.074911         1ICC       61       VAL       6.074911         1ICC       61       VAL       5.909472         1B5M       61       VAL       6.074911         1ICC       61       VAL       5.726742         1U9U       61       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.927268         3ZJS       89       VAL       5.90982         206P       119       VAL       6.607237         SIS	11 51 1SV9	20 36	VAL	6.470806
1B2V       37       VAL       5.425221         1DK0       37       VAL       5.400636         1DKH       37       VAL       5.642973         1B5M       45       VAL       5.846522         IICC       45       VAL       5.992035         1U9U       45       VAL       6.500194         1SI8       53       VAL       6.238869         3HX9       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       6.074911         IICC       61       VAL       6.074911         IICC       61       VAL       5.909472         1B5M       61       VAL       6.074911         IICC       61       VAL       5.726742         1U9U       61       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       5.917494         3QZZ       89       VAL       5.927268         3ZJS       89       VAL       5.790982         206P       119       VAL       6.1667237         ISI8	3TCC	36	VAL	6 135653
1B2V       37       VAL       5.425221         1DK0       37       VAL       5.400636         1DKH       37       VAL       5.642973         1B5M       45       VAL       5.846522         1ICC       45       VAL       5.992035         1U9U       45       VAL       6.500194         1SI8       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       5.909472         1B5M       61       VAL       6.074911         1ICC       61       VAL       6.074911         1ICC       61       VAL       5.598014         5CN5       68       VAL       5.598014         5CN5       68       VAL       5.917494         3QZZ       89       VAL       5.927268         3ZJS       89       VAL       5.927268         3ZJS       89       VAL       6.07237         1SI8       125       VAL       6.607237         1SI8       125       VAL       6.016899         1IPH       127       VAL       6.256166	5100	50		0.100000
IDK0       37       VAL       5.400636         IDKH       37       VAL       5.642973         IB5M       45       VAL       5.846522         IICC       45       VAL       5.992035         1U9U       45       VAL       6.500194         ISI8       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       10.092943         4NL5       53       VAL       6.074911         IICC       61       VAL       6.074911         IICC       61       VAL       5.726742         1U9U       61       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.917494         3QZZ       89       VAL       5.927268         3ZJS       89       VAL       5.790982         206P       119       VAL       6.176593         5KZL       124       VAL       6.607237         ISI8       125       VAL       6.016899         IIPH	1B2V	37	VAL	5.425221
IDKH       37       VAL       5.642973         IB5M       45       VAL       5.846522         IICC       45       VAL       5.992035         1U9U       45       VAL       6.500194         ISI8       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       5.909472         IB5M       61       VAL       6.074911         IICC       61       VAL       6.074911         IICC       61       VAL       6.163696         2SPL       68       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.917494         3QZZ       89       VAL       5.927268         3ZJS       89       VAL       5.790982         206P       119       VAL       6.07237         ISI8       125       VAL       6.016899         IIPH       127       VAL       6.21666	1DK0	37	VAL	5.400636
1B5M       45       VAL       5.846522         1ICC       45       VAL       5.992035         1U9U       45       VAL       6.500194         1SI8       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       5.909472         1B5M       61       VAL       5.909472         1B5M       61       VAL       6.074911         1ICC       61       VAL       5.726742         1U9U       61       VAL       5.726742         1U9U       61       VAL       5.598014         5CN5       68       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.927268         3ZJS       89       VAL       5.790982         2O6P       119       VAL       6.176593         5KZL       124       VAL       6.016899         1IPH       127       VAL       6.256166	IDKH	37	VAL	5.642973
IICC       45       VAL       5.992035         1U9U       45       VAL       6.500194         ISI8       53       VAL       6.238869         3HX9       53       VAL       10.092943         4NL5       53       VAL       5.909472         IB5M       61       VAL       5.909472         IB5M       61       VAL       6.074911         IICC       61       VAL       5.726742         1U9U       61       VAL       5.726742         1U9U       61       VAL       5.726742         1U9U       61       VAL       5.726742         1U9U       61       VAL       5.73648         SSPL       68       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.927268         3ZJS       89       VAL       5.927268         3ZJS       89       VAL       5.790982         2O6P       119       VAL       6.176593         5KZL       124       VAL       6.016899         1IPH	1B5M	45	VAL	5.846522
1U9U45VAL6.5001941SI853VAL6.2388693HX953VAL10.0929434NL553VAL5.9094721B5M61VAL6.0749111ICC61VAL5.7267421U9U61VAL5.7267421U9U61VAL5.5980145CN568VAL5.5564984B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.0168991IPH127VAL6.016899	IICC	45	VAL	5.992035
1SI853VAL6.2388693HX953VAL10.0929434NL553VAL5.9094721B5M61VAL6.0749111ICC61VAL5.7267421U9U61VAL5.7267421U9U61VAL5.5980145CN568VAL5.5564984B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.0168991IPH127VAL6.016899	1U9U	45	VAL	6.500194
3HX9       53       VAL       10.092943         4NL5       53       VAL       5.909472         1B5M       61       VAL       6.074911         1ICC       61       VAL       5.726742         1U9U       61       VAL       5.726742         1U9U       61       VAL       5.726742         1U9U       61       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.917494         3QZZ       89       VAL       5.927268         3ZJS       89       VAL       5.790982         2O6P       119       VAL       6.07237         1SI8       125       VAL       6.016899         1IPH       127       VAL       6.256166	1SI8	53	VAL	6.238869
4NL5       53       VAL       5.909472         1B5M       61       VAL       6.074911         1ICC       61       VAL       5.726742         1U9U       61       VAL       6.163696         2SPL       68       VAL       5.598014         5CN5       68       VAL       5.556498         4B8N       75       VAL       6.033658         2VEB       89       VAL       5.917494         3QZZ       89       VAL       5.927268         3ZJS       89       VAL       5.790982         2O6P       119       VAL       6.176593         5KZL       124       VAL       6.016899         1IPH       127       VAL       6.256166	3HX9	53	VAL	10.092943
1B5M61VAL6.0749111ICC61VAL5.7267421U9U61VAL6.1636962SPL68VAL5.5980145CN568VAL5.5564984B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.6072371SI8125VAL6.0168991IPH127VAL6.256166	$4\mathrm{NL5}$	53	VAL	5.909472
1ICC61VAL5.7267421U9U61VAL6.1636962SPL68VAL5.5980145CN568VAL5.5564984B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.0168991IPH127VAL6.256166	1B5M	61	VAL	6.074911
1U9U61VAL6.1636962SPL68VAL5.5980145CN568VAL5.5564984B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.6072371SI8125VAL6.0168991IPH127VAL6.256166	1ICC	61	VAL	5.726742
2SPL68VAL5.5980145CN568VAL5.5564984B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.6072371SI8125VAL6.0168991IPH127VAL6.256166	1U9U	61	VAL	6.163696
5CN568VAL5.5564984B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.6072371SI8125VAL6.0168991IPH127VAL6.256166	2SPL	68	VAL	5.598014
4B8N75VAL6.0336582VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.6072371SI8125VAL6.0168991IPH127VAL6.256166	5CN5	68	VAL	5.556498
2VEB89VAL5.9174943QZZ89VAL5.9272683ZJS89VAL5.7909822O6P119VAL6.1765935KZL124VAL6.6072371SI8125VAL6.0168991IPH127VAL6.256166	4B8N	75	VAL	6.033658
3QZZ       89       VAL       5.927268         3ZJS       89       VAL       5.790982         2O6P       119       VAL       6.176593         5KZL       124       VAL       6.607237         1SI8       125       VAL       6.016899         1IPH       127       VAL       6.256166	2VEB	89	VAL	5.917494
3ZJS       89       VAL       5.790982         2O6P       119       VAL       6.176593         5KZL       124       VAL       6.607237         1SI8       125       VAL       6.016899         1IPH       127       VAL       6.256166	3QZZ	89	VAL	5.927268
2O6P119VAL6.1765935KZL124VAL6.6072371SI8125VAL6.0168991IPH127VAL6.256166	3ZJS	89	VAL	5.790982
5KZL       124       VAL       6.607237         1SI8       125       VAL       6.016899         1IPH       127       VAL       6.256166	2O6P	119	VAL	6.176593
1SI8125VAL6.0168991IPH127VAL6.256166	5KZL	124	VAL	6.607237
1010         125         VIL         0.010039           1IPH         127         VAL         6.256166	1SI8	195	VAL	6 016800
	1IPH	125	VAL	6.256166

 Table B.13: HEM: Mean Distances of Each Residue in Pocket (continued)

PDB_ID	Residue Munber	Residue Code	Mean Distance
3VP5	131	VAL	5.568423
3VP5	148	VAL	6.888565
501L	152	VAL	6.293389
5O1M	152	VAL	6.250877
3QZN	161	VAL	6.290827
6A2J	175	VAL	6.202413
6A2J	182	VAL	6.679490
4CDP	192	VAL	5.600764
2J0P	195	VAL	6.307524
5O1L	197	VAL	6.648164
501M	197	VAL	6.631076
1IPH	199	VAL	6.294207
2IIZ	228	VAL	5.315815
2BHJ	346	VAL	6.643571
2IPS	354	VAL	6.655642
5VEU	369	VAL	6.886497
1ZVI	416	VAL	5.960795

 Table B.13:
 HEM: Mean Distances of Each Residue in Pocket (continued)

**Table B.14:** HEC: Mean Distances of Each Residue in Pocket

PDB ID	Resilue Number	Residue Code	Mean Distance
5KPF	81	ALA	6.517051
$5 \mathrm{LFT}$	81	ALA	6.400723
$5\mathrm{T8W}$	81	ALA	6.484127
3EAH	147	ALA	6.240842
2BC5	106	ARG	5.961420
6WZA	106	ARG	6.631682
1BBH	129	ARG	5.790808
3EAH	149	ARG	5.803314
3EAH	153	ARG	6.514542
2BC5	99	ASN	6.936196

PDB JD	Residue Number	Residue Code	Mean Distance
3X15 5KPF 5LFT 5T8W 6XNK 2BH5	12 14 14 14 14 15	CYS CYS CYS CYS CYS CYS	$\begin{array}{c} 6.451594 \\ 6.631432 \\ 6.598389 \\ 6.647516 \\ 6.275930 \\ 6.513509 \end{array}$
3X15 5KPF 5LFT 5T8W 6XNK	15 17 17 17	CYS CYS CYS CYS	$\begin{array}{c} 6.178945 \\ 6.098545 \\ 6.056595 \\ 6.188739 \\ 5.903640 \end{array}$
0XNR 1W2L 2BH5 1W2L 2BC5	17 18 18 21 98	CYS CYS CYS CYS	$\begin{array}{c} 5.903040 \\ 6.554906 \\ 6.369197 \\ 6.223591 \\ 5.957326 \end{array}$
6WZA 2BC5 6WZA 1BBH 1BBH	98 101 101 121 124	CYS CYS CYS CYS CYS	$5.774303 \\ 6.394766 \\ 6.455707 \\ 5.737156 \\ 6.272059$
3EAH 6VDQ 1S56 1BBH 3X15	$150 \\ 317 \\ 58 \\ 17 \\ 24$	CYS CYS GLN GLU GLY	$\begin{array}{c} 4.247423\\ 6.231170\\ 6.005777\\ 6.940695\\ 6.352237\end{array}$
5KPF 5LFT 5T8W 6XNK 1W2L	29 29 29 29 31	GLY GLY GLY GLY GLY	6.052599 6.048126 6.153313 5.786913 6.565877
2BH5 3EAH 3X15 5KPF 5LFT	$36 \\ 152 \\ 16 \\ 18 \\ 18 \\ 18$	GLY GLY HIS HIS HIS	$\begin{array}{c} 6.126048 \\ 5.627214 \\ 4.360557 \\ 4.310334 \\ 4.342999 \end{array}$

 Table B.14: HEC: Mean Distances of Each Residue in Pocket (continued)

PDB JD	Resilue Muniber	Residue Code	Mean Distance
5T8W	18	HIS	$\begin{array}{c} 4.334295\\ 4.599701\\ 4.283790\\ 4.350769\\ 4.475028\end{array}$
6XNK	18	HIS	
2BH5	19	HIS	
1W2L	22	HIS	
1S56	81	HIS	
2BC5	102	HIS	$\begin{array}{c} 4.186908 \\ 4.440577 \\ 4.218890 \\ 4.500421 \\ 4.120545 \end{array}$
6WZA	102	HIS	
1BBH	125	HIS	
6VDQ	274	HIS	
6VDQ	313	HIS	
3X15 1W2L 6XNK 1S56 6VDQ	$30 \\ 61 \\ 75 \\ 86 \\ 278$	ILE ILE ILE ILE ILE	$\begin{array}{c} 6.412845\\ 6.839545\\ 6.412701\\ 5.878780\\ 5.358791\end{array}$
2BC5	3	LEU	6.742954
6WZA	3	LEU	6.697674
2BC5	10	LEU	6.154091
6WZA	10	LEU	6.067786
5KPF	32	LEU	6.145036
5LFT	32	LEU	$\begin{array}{c} 6.106815\\ 5.994375\\ 6.085909\\ 5.728784\\ 5.947501\end{array}$
5T8W	32	LEU	
6XNK	32	LEU	
2BH5	39	LEU	
1S56	54	LEU	
5KPF 5LFT 5T8W 6VDQ 6VDQ	68 68 238 277	LEU LEU LEU LEU LEU	$\begin{array}{c} 6.268124\\ 6.315525\\ 6.123569\\ 6.409586\\ 6.506868\end{array}$
6XNK	79	LYS	3.938274
2BH5	100	LYS	4.313747
2BC5	7	MET	4.661903
6WZA	7	MET	4.611608
1BBH	19	MET	6.049470

 Table B.14: HEC: Mean Distances of Each Residue in Pocket (continued)

PDB ID	Residue Number	Residue Code	Mean Distance
1W2L 1S56 5KPF 5LFT 5T8W 1W2L 3X15	$76 \\ 77 \\ 80 \\ 80 \\ 80 \\ 80 \\ 34 \\ 44 \\ 44$	MET MET MET MET PHE PHE	$\begin{array}{r} 4.403618\\ 6.187616\\ 4.692154\\ 4.757864\\ 4.693021\\ 5.935685\\ 6.024333\end{array}$
1S56	46	PHE	5.938368
2BC5	65	PHE	6.201901
6WZA	65	PHE	6.184290
5KPF	82	PHE	$\begin{array}{c} 6.311357\\ 6.466458\\ 6.527249\\ 6.736126\\ 6.137327\end{array}$
5LFT	82	PHE	
5T8W	82	PHE	
2BH5	102	PHE	
3EAH	319	PHE	
6VDQ	320	PHE	$\begin{array}{c} 6.121894 \\ 6.252857 \\ 6.184028 \\ 6.179273 \\ 6.138272 \end{array}$
3X15	25	PRO	
5KPF	30	PRO	
5LFT	30	PRO	
5T8W	30	PRO	
6XNK	30	PRO	5.900245
1W2L	32	PRO	6.457693
2BH5	37	PRO	6.202537
5KPF	71	PRO	6.976183
5LFT	71	PRO	6.983064
5T8W	71	PRO	$\begin{array}{c} 6.909375\\ 6.071845\\ 6.953188\\ 6.470812\\ 6.983672\end{array}$
1W2L	77	PRO	
2BH5	83	PRO	
1W2L	60	SER	
6XNK	28	THR	
6VDQ 3EAH 6VDQ 3EAH 1BBH	$309 \\ 144 \\ 271 \\ 322 \\ 16$	THR TRP TRP TRP TYR	$\begin{array}{c} 6.443589 \\ 5.647844 \\ 5.880644 \\ 6.529256 \\ 4.795494 \end{array}$

 Table B.14: HEC: Mean Distances of Each Residue in Pocket (continued)

PDB ID	Residue Munber	Resilue Code	Mean Distance
1S56	33	TYR	$\begin{array}{c} 6.252015\\ 6.554347\\ 5.922923\\ 5.919346\\ 5.858639\end{array}$
1BBH	58	TYR	
5KPF	67	TYR	
5LFT	67	TYR	
5T8W	67	TYR	
6XNK	67	TYR	$5.613420 \\ 5.535216 \\ 6.249808 \\ 6.768220 \\ 6.753821$
2BH5	79	TYR	
1W2L	80	TYR	
6VDQ	310	TYR	
1W2L	75	VAL	
1S56		VAL	6.205932
2BH5		VAL	6.887770
6XNK		VAL	6.004096
1S56		VAL	6.626107
1S56		VAL	6.029592
3EAH	151	VAL	6.103944

 Table B.14:
 HEC: Mean Distances of Each Residue in Pocket (continued)

 Table B.15:
 SRM: Mean Distances of Each Residue in Pocket

PDB_ID	Residue Munber	Residue Code	Mean Distance
1ZJ8	468	ALA	6.774896
3B0G	486	ALA	6.469408
3VKP	486	ALA	6.471195
3VLX	486	ALA	6.481752
3VLY	486	ALA	6.503895
3VLZ	486	ALA	6.507235
5 H8 V	545	ALA	6.528336
2AOP	83	ARG	5.905472
1ZJ8	97	ARG	5.632921
2AKJ	109	ARG	5.624044
3B0G	109	ARG	5.714505

PDB ID	Residue Muniber	Residue Code	Mean Distance
3VKP 3VLX 3VLY 3VLZ	, 109 109 109 109	ARG ARG ARG ARG	5.727950 5.657293 5.670401 5.666461
5H8V 2AOP 1ZJ8 2AKJ 3B0G	124 153 166 179 179	ARG ARG ARG ARG ARG	5.731236 6.898322 6.411696 6.270969 6.332302
3VKP 3VLX 3VLY 3VLZ 5H8V	179 179 179 179 179 193	ARG ARG ARG ARG ARG	$\begin{array}{c} 6.261289\\ 6.332845\\ 6.349458\\ 6.432708\\ 6.748373\end{array}$
2AOP 1ZJ8 2AOP 3B0G 3VKP	135 116 465 481 483 483	ASN ASN ASN ASN ASN	$\begin{array}{c} 6.627004 \\ 6.589731 \\ 6.568014 \\ 6.105308 \\ 6.093849 \end{array}$
3VLX 3VLY 3VLZ 2AKJ 5H8V	483 483 483 484 542	ASN ASN ASN ASN ASN	$\begin{array}{c} 6.149563\\ 6.199685\\ 6.172324\\ 6.180565\\ 6.517505\end{array}$
1ZJ8 1ZJ8 2AOP 3B0G 3VKP	129 467 483 485 485	ASP CYS CYS CYS CYS	$6.873987 \\ 4.642760 \\ 4.593058 \\ 4.334547 \\ 4.338921$
3VLX 3VLY 3VLZ 2AKJ 5H8V	$ \begin{array}{r} 485 \\ 485 \\ 485 \\ 486 \\ 494 \end{array} $	CYS CYS CYS CYS CYS	$\begin{array}{c} 4.333556\\ 4.349260\\ 4.361247\\ 4.400598\\ 6.918908\end{array}$
5H8V	544	CYS	4.294361

 Table B.15: SRM: Mean Distances of Each Residue in Pocket (continued)

PDB ID	Residue Number	Residue Code	Mean Distance
2AOP	121	GLN	$\begin{array}{c} 6.832109 \\ 6.870508 \\ 6.725078 \\ 6.644058 \end{array}$
1ZJ8	134	GLN	
5H8V	161	GLN	
2AOP	482	GLY	
2AOP	484	GLY	6.751562
2AKJ	487	GLY	6.536313
5H8V	543	GLY	6.487994
1ZJ8	207	LYS	5.279599
1ZJ8	209	LYS	5.254105
2AOP	215	LYS	5.521547
2AOP	217	LYS	5.485034
2AKJ	224	LYS	5.292960
3B0G	224	LYS	5.579947
3VKP	224	LYS	5.500133
3VLX	224	LYS	5.605021
3VLY	224	LYS	5.637976
3VLZ	224	LYS	5.601385
3VLY	226	LYS	5.485627
3VLZ	226	LYS	5.641233
5H8V	276	LYS	5.805329
5H8V	278	LYS	5.495851
1ZJ8	466	SER	6.539429
2AKJ	485	SER	6.504302
2AKJ	142	THR	6.814343
3B0G	142	THR	$\begin{array}{c} 6.442796 \\ 6.428882 \\ 6.455248 \\ 6.452740 \\ 6.394057 \end{array}$
3VKP	142	THR	
3VLX	142	THR	
3VLY	142	THR	
3VLZ	142	THR	
5H8V 3B0G 3VKP 3VLX 3VLY	$     156 \\     484 \\     484 \\     484 \\     484 $	THR THR THR THR THR	$\begin{array}{c} 6.490994 \\ 6.402854 \\ 6.412766 \\ 6.401875 \\ 6.414362 \end{array}$
3VLZ	484	THR	6.437540

 Table B.15: SRM: Mean Distances of Each Residue in Pocket (continued)

PDB ID	Residue Auniber	esidue Code	Mean Distance
1ZJ8	69 T	YR	6.963349
5H8V	106 T	YR	6.992106

 Table B.15: SRM: Mean Distances of Each Residue in Pocket (continued)

Table B.16:	<b>VERDOHEME:</b>	Mean	Distances of	Each	Residue	in	Pocke	ŧ
-------------	-------------------	------	--------------	------	---------	----	-------	---

PDB ID	Residue Munber	Residue Code	Mean Distance
2ZVU	28	ALA	6.962159
3MOO	136	ASP	6.778611
2ZVU	140	ASP	6.674210
3MOO	24	GLU	6.275511
2ZVU	29	GLU	6.221641
3MOO	135	GLY	5.288496
2ZVU	139	GLY	5.265696
3MOO	139	GLY	5.369017
3MOO	140	GLY	6.027517
2ZVU	143	GLY	5.436145
2ZVU	144	GLY	5.902504
3MOO	20	HIS	4.614778
2ZVU	25	HIS	4.603252
3MOO	134	LEU	6.100073
2ZVU	138	LEU	6.249768
3MOO	201	PHE	5.958999
2ZVU	207	PHE	6.037412
3MOO	138	SER	5.886820
2ZVU	142	SER	6.048311
2ZVU	135	THR	6.765195
3MOO	131	VAL	6.796515
1TWN	140	ASP	6.273979
1TWR	140	ASP	6.553790
1TWN	29	GLU	6.123574
1TWR	29	GLU	6.517157

PDB ID	Residue Munber	Residue Code	Mean Distance
1TWN	139	GLY	5.092800
1TWR	139	GLY	5.369385
1TWN	143	GLY	5.231213
1TWR	143	GLY	5.836559
1TWN	144	GLY	6.024952
1TWN	25	HIS	$\begin{array}{c} 4.673370\\ 4.786588\\ 6.399559\\ 6.579770\\ 6.263716\end{array}$
1TWR	25	HIS	
1TWN	138	LEU	
1TWR	138	LEU	
1TWN	207	PHE	
1TWR	207	PHE	6.447849
1TWN	142	SER	6.035867
1TWR	142	SER	6.195017
1TWN	135	THR	6.865192

Table B.16: VERDOHEME: Mean Distances of Each Residue in Pocket (continued)

# B.4 Volume and Surface Areas

## B.4.1 Tables of Volume and Surface Areas, Distance Cutoff 7A

Table B.17: HEM: Volume and Surface Areas, Cutoff 7A

PDB ID	Volume Data	HEM Excluded	SA HEN Accessible	Podet fxchude	Podet Accessible Sh
1B2V	893.60	502.042	820.988	7276.09	8232.60
1B5M	672.79	490.050	800.780	4695.01	5512.20
1DK0	966.72	505.258	837.157	7237.94	8217.58
1DKH	1010.70	509.042	828.131	7402.34	8175.94
1ICC	1000.40	499.585	811.357	5079.72	6028.23
1IPH	1345.60	501.603	814.652	33983.80	34094.40

		Ś	5A 	sh re	3.5A
0	Dara	A chide	CCCSSIL	Etchic	Access
3 ^j	111ne/	N P.	A A	det '	Net -
S.D.	Nor	ALL.	AL.	200.	200.
1N45	978.98	560.384	983.238	9944.50	10779.30
1P3T	987.05	509.939	829.611	9530.67	10410.80
$1 \mathrm{QHU}$	1389.20	573.686	1002.160	18503.10	18257.20
$1 \mathrm{QJS}$	1102.30	573.266	1000.380	18588.40	18584.10
1SI $8$	965.57	646.643	1184.070	23711.20	25120.40
1SY2	918.34	501.850	817.749	8960.76	9610.23
1U9U	738.55	496.132	813.773	4675.76	5632.32
1VGI	870.44	577.234	1002.530	9615.29	10248.20
1ZVI	1435.90	701.091	1129.540	19918.60	20968.20
2BHJ	1438.30	836.576	1290.530	20102.30	20762.60
2CJ0	809.62	2653.180	4835.280	12749.60	12892.20
2CN4	526.88	576.760	961.348	9617.23	11917.70
2CPO	886.17	1846.490	3329.540	13081.60	12995.60
2E2Y	994.92	811.270	1607.370	7531.94	8240.75
2FC2	1091.40	1011.190	1669.900	18383.50	18552.10
2IIZ	1015.60	731.342	1393.160	13651.70	14031.40
2IPS	1242.40	618.252	1075.560	27760.50	25814.10
2J0P	1281.80	1030.510	1873.810	15192.90	15871.10
2J18	841.67	1962.990	3556.340	12675.10	12779.00
2O6P	788.05	499.017	822.121	6234.84	7200.43
2Q6N	1030.10	644.365	1040.080	20051.10	19747.50
2R7A	1284.50	507.098	845.182	11255.10	12389.00
2SPL	1055.70	589.706	1029.660	7588.36	8105.94
2VEB	886.06	762.309	1454.750	9840.72	10401.80
3HX9	1844.50	785.442	1168.200	5819.08	7189.03
3MVF	1271.40	576.502	1009.950	8559.24	9573.08
3QZN	726.52	664.858	1221.330	6133.24	7179.49
3QZZ	977.30	496.950	825.255	8523.59	9708.28
3SIK	492.15	498.621	823.565	6495.38	7739.06
3TGC	969.87	524.380	853.710	8712.77	9181.94
3VP5	1094.60	602.790	1050.820	9801.82	10810.80
3ZJS	788.74	528.419	860.137	9568.10	10130.40
4B8N	841.27	569.302	990.216	4560.39	5458.66
4CAT	1933.90	484.341	778.502	28372.40	36788.30

 Table B.17: HEM: Volume and Surface Areas, Cutoff 7A (continued)

		Ś.	512	SP Re	5 ¹²
PDB ID	Volume Data	HEM Exclude	HEM Accessit	Pocket Freihe	Politet Access
4CDP	1053.70	1425.050	3141.090	14733.50	15887.40
4I3Q	1220.50	510.623	845.108	21946.50	21093.70
4JET	1010.80	495.992	818.131	7887.81	8695.85
4MF9	1286.50	488.695	790.732	15669.80	16791.30
4MYP	610.72	963.019	1834.680	6285.40	7351.53
4NL5	1088.70	576.669	1003.400	5715.52	6894.72
4UZV	1184.10	526.584	844.058	7378.28	8322.74
4XZD	932.14	498.788	816.032	8028.32	8752.50
4Y1Q	952.23	494.939	806.960	7905.84	8785.04
$5\mathrm{CN5}$	1070.30	663.162	1223.640	7629.45	8117.34
5 GJ3	1108.20	756.603	1131.670	11394.00	12591.80
5KZL	914.22	483.760	805.567	9662.03	10431.00
501L	1438.70	801.519	1447.270	15538.20	16876.00
501M	1431.30	493.850	799.331	16096.90	15912.50
5VEU	964.76	993.578	1502.660	20900.80	20425.90
6A2J	1015.90	6183.450	9902.920	14870.30	15888.00
7C74	1155.10	497.527	820.381	26111.40	25094.20
7DMR	1083.40	1049.750	1916.950	26004.00	24563.80

 Table B.17: HEM: Volume and Surface Areas, Cutoff 7A (continued)

Table B.18: HEC: Volume and Surface Areas, Cutoff 7A

PDB ID	Volume Data	HEC Excluded	5A HEC Accessible	Podet Fxclude	Pocket Accessible
1BBH	969.51	514.130	829.817	6441.44	7514.06
1S56	1103.60	643.733	1075.840	6711.26	7477.96
1W2L	756.08	702.711	1240.680	5042.58	5485.50
2BC5	1166.20	569.905	997.324	5489.91	6306.02
2BH5	814.15	508.637	844.494	6359.51	6975.70
3EAH	1280.90	993.430	1697.130	18413.40	19313.80

PDB ID	Volume Data	HEC Excluded	5A HEC_Accessible	Podet Fxcinde	Pocket Accessible
3X15	823.59	496.328	802.584	5722.90	7493.62
5KPF	778.79	568.036	1007.680	5485.51	6155.84
$5 \mathrm{LFT}$	809.40	1720.870	2719.000	5539.47	6315.96
$5\mathrm{T8W}$	858.74	511.519	848.952	5755.48	6458.40
6VDQ	977.52	510.534	846.299	13399.60	14076.40
6WZA	1040.10	713.997	1095.240	5529.40	6385.75
6XNK	2214.40	499.687	835.610	6737.92	8143.17

 Table B.18: HEC: Volume and Surface Areas, Cutoff 7A (continued)

 Table B.19:
 SRM: Volume and Surface Areas, Cutoff 7A

PDB ID	Volume Date	SRM Excluded	SRM Accessible	pooleet Excluded	Pocket Accessible
1ZJ8	1960.2	656.508	1036.43	20388.7	21432.8
2AKJ	1810.2	659.667	1041.00	21673.6	20933.7
2AOP	1040.5	682.170	1045.18	18119.8	18016.0
3B0G	1189.9	666.995	1054.40	21496.8	21033.9
3VKP	1178.0	675.050	1049.85	21279.3	20964.9
3VLX	1164.8	667.013	1052.76	21470.0	21037.0
3VLY	1061.8	675.293	1046.41	21476.6	21022.1
3VLZ	1123.2	676.360	1051.40	21433.5	20901.8
5H8V	1360.8	685.850	1052.56	22885.9	22713.3

BD	HILLE Datia	BOHDE	EXCLUDED SA	ACCESSIBILE SP	LUDED SA	SBHE SA
S.N.	Nor	Nr.	No.	80	<i><b>P</b></i> <b>O</b>	
2ZVU	984.51	560.791	969.143	9633.81	10317.3	
3MOO	864.48	870.228	1772.07	9371.88	10170.3	
1TWN	1145	448.81	759.632	9966.97	10896.8	
1TWR	1426	469.982	783.313	9854.01	10775.6	

 Table B.20:
 VERDOHEME:
 Volume and Surface Areas, Cutoff 7A

# B.4.2 Tables of Volume and Surface Areas, Distance Cutoff 5A

Table B.21: HEM: Volume and Surface Areas, Cutoff 5A

PDB ID	Volume Data	HEM Excluded	SA Accessible	Podet Fredhile	d. 5 h Accessible 5 h
1B2V	825.86	502.042	820.988	7276.09	8232.60
1B5M	644.19	490.050	800.780	4695.01	5512.20
1DK0	873.82	505.258	837.157	7237.94	8217.58
1DKH	910.74	509.042	828.131	7402.34	8175.94
1ICC	904.56	499.585	811.357	5079.72	6028.23
1IPH	976.97	501.603	814.652	33983.80	34094.40
1N45	836.59	560.384	983.238	9944.50	10779.30
1P3T	930.51	509.939	829.611	9530.67	10410.80
$1 \mathrm{QHU}$	1214.00	573.686	1002.160	18503.10	18257.20
1 QJS	1093.20	573.266	1000.380	18588.40	18584.10
1SI8	762.27	646.643	1184.070	23711.20	25120.40
1SY2	898.89	501.850	817.749	8960.76	9610.23
1U9U	677.19	496.132	813.773	4675.76	5632.32
1VGI	820.91	577.234	1002.530	9615.29	10248.20

			e P	517	ST
	x®	ded	. Si	ande ande	d' ossib
Ð	E Dar	Exclu	Acces.	EXCL	Acce
PDB	VOIIII	HEM	HEM	Pocker	Pockey
1ZVI	994.62	701.091	1129.540	19918.60	20968.20
2BHJ	1183.70	836.576	1290.530	20102.30	20762.60
2CJ0	798.44	2653.180	4835.280	12749.60	12892.20
$2\mathrm{CN4}$	439.81	576.760	961.348	9617.23	11917.70
2CPO	884.75	1846.490	3329.540	13081.60	12995.60
2E2Y	902.38	811.270	1607.370	7531.94	8240.75
2FC2	1048.40	1011.190	1669.900	18383.50	18552.10
2IIZ	925.88	731.342	1393.160	13651.70	14031.40
2IPS	935.82	618.252	1075.560	27760.50	25814.10
2J0P	925.87	1030.510	1873.810	15192.90	15871.10
2J18	788.31	1962.990	3556.340	12675.10	12779.00
2O6P	675.40	499.017	822.121	6234.84	7200.43
2Q6N	971.08	644.365	1040.080	20051.10	19747.50
2R7A	889.50	507.098	845.182	11255.10	12389.00
2SPL	882.22	589.706	1029.660	7588.36	8105.94
2VEB	845.18	762.309	1454.750	9840.72	10401.80
3HX9	1792.70	785.442	1168.200	5819.08	7189.03
3MVF	1087.90	576.502	1009.950	8559.24	9573.08
3QZN	724.66	664.858	1221.330	6133.24	7179.49
3QZZ	903.93	496.950	825.255	8523.59	9708.28
3SIK	478.73	498.621	823.565	6495.38	7739.06
3TGC	926.51	524.380	853.710	8712.77	9181.94
3VP5	875.01	602.790	1050.820	9801.82	10810.80
3ZJS	842.79	528.419	860.137	9568.10	10130.40
4B8N	812.96	569.302	990.216	4560.39	5458.66
4CAT	583.88	484.341	778.502	28372.40	36788.30
4CDP	996.51	1425.050	3141.090	14733.50	15887.40
4I3Q	1044.70	510.623	845.108	21946.50	21093.70
4JET	908.16	495.992	818.131	7887.81	8695.85
4MF9	1041.70	488.695	790.732	15669.80	16791.30
4MYP	559.54	963.019	1834.680	6285.40	7351.53
4NL5	1052.20	576.669	1003.400	5715.52	6894.72
4UZV	1115.10	526.584	844.058	7378.28	8322.74
4XZD	853.44	498.788	816.032	8028.32	8752.50

 Table B.21: HEM: Volume and Surface Areas, Cutoff 5A (continued)

2 P	me Data	at Excluded	SA Accessible	SA ret Fxclude	d SA Accossil
BUT	Loft	HEL	HEI	200tr	2001
4Y1Q	835.77	494.939	806.960	7905.84	8785.04
5CN5	901.87	663.162	1223.640	7629.45	8117.34
5 GJ3	1095.50	756.603	1131.670	11394.00	12591.80
5KZL	870.61	483.760	805.567	9662.03	10431.00
501L	1111.80	801.519	1447.270	15538.20	16876.00
501M	1053.40	493.850	799.331	16096.90	15912.50
5VEU	838.05	993.578	1502.660	20900.80	20425.90
6A2J	857.55	6183.450	9902.920	14870.30	15888.00
7C74	904.00	497.527	820.381	26111.40	25094.20
7DMR	853.80	1049.750	1916.950	26004.00	24563.80

 Table B.21: HEM: Volume and Surface Areas, Cutoff 5A (continued)

 Table B.22:
 HEC: Volume and Surface Areas, Cutoff 5A

PDB ID	Volume Data	HEC Excluded	5A HEC Accessible	Podet Exclude	d SA Rocessible	9A
1BBH	894.91	514.130	829.817	6441.44	7514.06	
1S56	1012.10	643.733	1075.840	6711.26	7477.96	
1W2L	715.73	702.711	1240.680	5042.58	5485.50	
2BC5	933.67	569.905	997.324	5489.91	6306.02	
2BH5	757.38	508.637	844.494	6359.51	6975.70	
3EAH	1022.70	993.430	1697.130	18413.40	19313.80	
3X15	600.12	496.328	802.584	5722.90	7493.62	
$5 \mathrm{KPF}$	747.68	568.036	1007.680	5485.51	6155.84	
$5 \mathrm{LFT}$	803.97	1720.870	2719.000	5539.47	6315.96	
$5\mathrm{T8W}$	806.94	511.519	848.952	5755.48	6458.40	
6VDQ	789.70	510.534	846.299	13399.60	14076.40	
6WZA	879.49	713.997	1095.240	5529.40	6385.75	
6XNK	1579.90	499.687	835.610	6737.92	8143.17	

PDB ID	Volume Dava	SRM Excluded	SRM Accessible	Pocket Excluded	Pocket Accessible
1ZJ8	1605.5	656.508	1036.43	20388.7	21432.8
2AKJ	1539.8	659.667	1041.00	21673.6	20933.7
2AOP	1057.2	682.170	1045.18	18119.8	18016.0
3B0G	1104.0	666.995	1054.40	21496.8	21033.9
3VKP	1096.4	675.050	1049.85	21279.3	20964.9
3VLX	1098.5	667.013	1052.76	21470.0	21037.0
3VLY	1040.1	675.293	1046.41	21476.6	21022.1
3VLZ	1162.3	676.360	1051.40	21433.5	20901.8
5 H8 V	1153.7	685.850	1052.56	22885.9	22713.3

Table B.23: SRM: Volume and Surface Areas, Cutoff 5A

 Table B.24:
 VERDOHEME:
 Volume and Surface Areas, Cutoff 5A

Ð	ne Data	DOILEME	EXCLUDED SA	ACCESSIBILE SI	LUDED SA COESTBILES
5DB	Volut	VER	VER	20Cr	POCI
2ZVU	875.9	560.791	969.143	9633.81	10317.3
3MOO	705.2	870.228	1772.07	9371.88	10170.3
1TWN	1103.5	448.81	759.632	9966.97	10896.8
1TWR	1002.9	469.982	783.313	9854.01	10775.6

B.5 All Planar Angles

ð	Anthe	s code.7	Oistance		Çode.7
PDB II	Residue/	Residue	Mean	Angle	Residue
1N45	28	ALA	6.981230	51.517	ALA
2CJ0	31	ALA	5.440871	54.576	ALA
20P0	31 $31$ $42$	ALA	5.305125	50.842	ALA
2J18		ALA	5.457126	52.882	ALA
1SY2		ALA	6.006055	38.441	ALA
3MVF 3TGC 2O6P 4B8N 1B5M	42 42 49 54 67	ALA ALA ALA ALA	5.827660 6.033598 6.356063 6.390793 5.797296	37.714 36.906 33.301 40.757	ALA ALA ALA ALA
1ICC	67	ALA	$\begin{array}{c} 6.085233\\ 6.016697\\ 6.531120\\ 6.539227\\ 6.477348\end{array}$	8.515	ALA
1U9U	67	ALA		3.989	ALA
2CJ0	71	ALA		88.775	ALA
2CPO	71	ALA		89.067	ALA
2J18	71	ALA		89.793	ALA
3HX9	71	ALA	$\begin{array}{c} 6.230664 \\ 6.805378 \\ 6.722226 \\ 6.382367 \\ 6.231014 \end{array}$	24.118	ALA
4NL5	71	ALA		12.006	ALA
4Y1Q	75	ALA		65.239	ALA
1P3T	121	ALA		68.509	ALA
3SIK	138	ALA		84.490	ALA
3QZN 2R7A 6A2J 2BHJ 6A2J	166 169 180 191 220	ALA ALA ALA ALA ALA	$\begin{array}{c} 6.907969 \\ 5.223004 \\ 6.687029 \\ 6.261711 \\ 5.986896 \end{array}$	$73.637 \\ 39.141 \\ 46.961 \\ 68.057 \\ 31.915$	ALA ALA ALA ALA ALA
6A2J	259	ALA	$\begin{array}{c} 6.937825\\ 6.581195\\ 6.207799\\ 5.672036\\ 5.305272\end{array}$	66.152	ALA
4MYP	282	ALA		36.442	ALA
4MYP	293	ALA		64.118	ALA
2Q6N	298	ALA		28.414	ALA
4I3Q	305	ALA		55.811	ALA
5VEU	305	ALA	$\begin{array}{c} 6.219660 \\ 6.481380 \\ 6.935846 \\ 6.667315 \\ 6.441232 \end{array}$	37.021	ALA
1ZVI	412	ALA		68.137	ALA
2Q6N	442	ALA		35.011	ALA
5VEU	447	ALA		35.226	ALA
4I3Q	448	ALA		28.736	ALA

 Table B.25:
 HEM: All Planar Angles

-	Aunthe	s code. ⁷	-		Code.3
PDB ID	Resitue	Residue	Mean Dr	Angle	Residue/
4JET	40	ARG	5.660400	8.293	ARG
4XZD	40	ARG	5.892195	23.940	ARG
4Y1Q	40	ARG	5.725205	11.586	ARG
3SIK	54	ARG	6.090293	58.962	ARG
2FC2	61	ARG	6.072553	27.736	ARG
2FC2	65	ARG	6.459491	31.691	ARG
4CDP	100	ARG	5.360373	82.404	ARG
2J0P	102	ARG	5.002395	83.046	ARG
4UZV	105	ARG	6.689489	51.468	ARG
4MF9	112	ARG	5.056393	85.919	ARG
5GJ3	142	ARG	9.016294	44.325	ARG
4JET	144	ARG	6.239587	45.482	ARG
4XZD	144	ARG	6.335714	52.771	ARG
4Y1Q	144	ARG	6.425880	45.332	ARG
2BHJ	193	ARG	5.745098	22.913	ARG
2BHJ	197	ARG	6.221230	38.014	ARG
4I3Q	212	ARG	6.392849	65.236	ARG
$1 \mathrm{QHU}$	214	ARG	6.588734	53.531	ARG
$1 \mathrm{QJS}$	214	ARG	6.249190	87.831	ARG
6A2J	217	ARG	6.781589	69.272	ARG
5 GJ3	241	ARG	5.542517	89.231	ARG
2IIZ	242	ARG	5.236889	71.798	ARG
1SI $8$	333	ARG	5.247624	87.335	ARG
2IPS	348	ARG	6.336679	28.401	ARG
7C74	348	ARG	6.274279	28.825	ARG
7DMR	348	ARG	6.250958	34.360	ARG
1IPH	411	ARG	5.321024	79.235	ARG
1ZVI	414	ARG	5.799426	24.112	ARG
1ZVI	418	ARG	6.259544	32.179	ARG
3HX9	7	ASN	9.030558	67.240	ASN
4NL5	7	ASN	5.402231	60.999	ASN
1B2V	41	ASN	6.894251	9.238	ASN
1DK0	41	ASN	6.870425	7.885	ASN
1P3T	118	ASN	6.625279	81.885	ASN
1SI8	127	ASN	6.666708	88.346	ASN

 Table B.25:
 HEM: All Planar Angles (continued)

	Annipe	Ş.	Code.t.		Code.3
PDB JD	Residue /	Residue	Neal Dr	Angle	Residue/
1IPH	201	ASN	6.396844	80.526	ASN
2BHJ	364	ASN	6.955669	54.701	ASN
2IPS	437	ASN	6.276979	27.543	ASN
7C74	437	ASN	6.653391	27.901	ASN
7DMR	437	ASN	6.591349	28.625	ASN
5VEU	440	ASN	6.408862	78.050	ASN
4I3Q	441	ASN	6.139159	80.458	ASN
1P3T	27	ASP	6.267807	39.072	ASP
2E2Y	64	ASP	6.865050	39.668	ASP
2IPS	108	ASP	5.870986	78.247	ASP
7C74	108	ASP	6.017401	74.114	ASP
7DMR	108	ASP	6.266021	79.901	ASP
5KZL	129	ASP	6.318347	48.961	ASP
1N45	140	ASP	6.389011	51.996	ASP
1VGI	140	ASP	6.566393	62.088	ASP
2IIZ	151	ASP	5.861207	42.941	ASP
4CDP	191	ASP	6.789427	37.522	ASP
2J0P	194	ASP	6.862392	50.396	ASP
$1 \mathrm{QHU}$	203	ASP	6.920576	64.837	ASP
$1 \mathrm{QJS}$	203	ASP	6.878437	64.521	ASP
2IIZ	284	ASP	6.598336	68.375	ASP
2CJ0	29	CYS	4.390905	47.217	CYS
2CPO	29	CYS	4.443549	49.291	CYS
2J18	29	CYS	4.359887	47.527	CYS
2FC2	62	CYS	4.482879	54.005	CYS
1P3T	113	CYS	6.881310	41.741	CYS
2BHJ	194	CYS	4.487497	52.816	CYS
1ZVI	415	CYS	4.181834	46.871	CYS
2Q6N	436	CYS	4.305637	40.993	CYS
5VEU	441	CYS	4.349464	42.614	CYS
4I3Q	442	CYS	4.085782	34.781	CYS
2IPS	105	GLN	5.981590	87.342	$\operatorname{GLN}$
7C74	105	GLN	5.667218	84.879	GLN
7DMR	105	GLN	5.517249	82.031	GLN
5GJ3	141	GLN	9.940999	57.821	GLN

 Table B.25:
 HEM: All Planar Angles (continued)

	NIIIIDE	\$ C ^e	de.t		Code.3
PDB JD	Residue	Residue	Neal Dr.	Angle	Residue
2R7A	253	GLN	6.081153	19.452	GLN
6A2J	258	GLN	5.803666	43.028	GLN
4MYP	292	GLN	6.537566	73.527	GLN
5KZL	19	GLU	5.803913	14.669	GLU
1N45	29	GLU	6.277510	13.488	GLU
1VGI	29	GLU	6.279863	19.844	GLU
501L	148	GLU	6.440638	81.093	GLU
2CJ0	183	GLU	5.716050	77.664	GLU
2CPO	183	GLU	5.799506	78.548	GLU
2J18	183	GLU	5.722472	78.531	GLU
1QHU	225	GLU	6.177350	81.356	GLU
1QJS	226	GLU	6.465511	78.730	GLU
2IPS	258	GLU	6.388898	83.283	GLU
7C74	258	GLU	6.258582	88.863	GLU
7DMR	258	GLU	6.172262	88.960	GLU
2Q6N	439	GLU	6.270464	60.625	GLU
1ZVI	592	GLU	6.601349	48.481	GLU
1B5M	41	GLY	5.388127	72.708	GLY
1ICC	41	GLY	5.723853	72.752	GLY
1U9U	41	GLY	5.723510	83.944	GLY
1B5M	42	GLY	6.533917	10.848	GLY
1ICC	42	GLY	6.657462	8.777	GLY
1U9U	42	GLY	6.689632	17.633	GLY
4B8N	50	GLY	5.464969	87.471	GLY
4B8N	51	GLY	6.462950	23.037	GLY
1B5M	62	GLY	6.365897	81.093	GLY
2FC2	64	GLY	5.882725	21.989	GLY
1P3T	116	GLY	5.737222	80.192	GLY
1P3T	120	GLY	4.843774	41.129	GLY
5KZL	128	GLY	5.130966	70.591	GLY
5KZL	132	GLY	5.705062	50.430	GLY
1N45	139	GLY	5.251379	58.119	GLY
1VGI	139	GLY	5.155470	60.437	GLY
1N45	143	GLY	5.882948	37.778	GLY
1VGI	143	GLY	5.279720	32.760	GLY

 Table B.25:
 HEM: All Planar Angles (continued)

	Annipe	st Code. ⁴	-		Code.
PDB ID	Residue	Residue/	Mean Dr	Angle	Residue/
1VGI	144	GLY	5.974807	66.493	GLY
2R7A	170	GLY	5.922307	19.803	GLY
6A2J	179	GLY	5.548597	36.551	GLY
2BHJ	196	GLY	5.667103	19.625	GLY
2FC2	233	GLY	6.517575	77.972	GLY
6A2J	262	GLY	5.820895	75.177	GLY
4MYP	291	GLY	6.624699	50.662	GLY
2Q6N	299	GLY	6.518431	10.616	GLY
4I3Q	306	GLY	6.573103	20.924	GLY
2IPS	350	GLY	6.712596	52.440	GLY
7C74	350	GLY	6.606591	46.520	GLY
7DMR	350	GLY	6.694618	48.519	GLY
2BHJ	365	GLY	6.617587	80.698	GLY
1ZVI	417	GLY	5.404983	24.763	GLY
2Q6N	438	GLY	5.615678	28.366	GLY
5VEU	443	GLY	5.482822	27.362	GLY
4I3Q	444	GLY	5.222394	22.218	GLY
1ZVI	586	GLY	6.997972	72.788	GLY
$5 \mathrm{KZL}$	15	HIS	4.819650	59.949	HIS
1P3T	23	HIS	4.573926	67.542	HIS
1N45	25	HIS	4.545004	69.116	HIS
1VGI	25	HIS	4.646180	72.142	HIS
1B2V	32	HIS	4.667618	51.415	HIS
1DK0	32	HIS	4.556145	48.497	HIS
1DKH	32	HIS	5.099382	50.187	HIS
1B5M	39	HIS	4.456809	87.693	HIS
1ICC	39	HIS	4.542187	78.752	HIS
1U9U	39	HIS	4.589294	80.451	HIS
4B8N	48	HIS	4.479396	87.524	HIS
1SI8	54	HIS	5.688888	26.890	HIS
1SY2	59	HIS	4.045387	85.351	HIS
3MVF	59	HIS	4.066882	87.977	HIS
3TGC	59	HIS	4.100823	87.207	HIS
1B5M	63	HIS	4.211990	71.272	HIS
1ICC	63	HIS	4.451283	57.814	HIS

 Table B.25:
 HEM: All Planar Angles (continued)
	Annipe	s code.	*		Code.3
208 ID	Residue	Residue	Mean Dr	Angle	Residue
1U9U	63	HIS	4.417873	66.393	HIS
2SPL	64	HIS	5.889080	73.719	HIS
5CN $5$	64	HIS	5.804727	84.840	HIS
4B8N	71	HIS	4.416116	70.933	HIS
3VP5	72	HIS	4.371971	45.918	HIS
3HX9	75	HIS	4.195649	50.709	HIS
4NL5	75	HIS	4.473936	46.347	HIS
4JET	81	HIS	5.381133	54.183	HIS
4XZD	81	HIS	5.263108	67.684	HIS
4Y1Q	81	HIS	5.294289	61.474	HIS
1B2V	83	HIS	5.366599	56.778	HIS
1DK0	83	HIS	5.314133	62.320	HIS
1DKH	83	HIS	5.223800	43.522	HIS
$2\mathrm{CN4}$	83	HIS	5.251875	61.039	HIS
3QZN	83	HIS	4.660500	67.495	HIS
2E2Y	93	HIS	4.514535	86.534	HIS
2SPL	93	HIS	4.578545	88.954	HIS
$5\mathrm{CN5}$	93	HIS	4.575365	82.799	HIS
2E2Y	97	HIS	5.917056	68.715	HIS
2SPL	97	HIS	5.997752	67.846	HIS
$5\mathrm{CN5}$	97	HIS	5.966408	71.762	HIS
4UZV	106	HIS	4.502311	79.507	HIS
2IPS	109	HIS	5.924623	73.103	HIS
7C74	109	HIS	5.952700	70.733	HIS
7DMR	109	HIS	5.699226	62.306	HIS
2VEB	120	HIS	4.471709	79.839	HIS
3QZZ	120	HIS	4.599066	74.693	HIS
3ZJS	120	HIS	4.427156	73.923	HIS
1IPH	128	HIS	5.713777	33.997	HIS
206P	134	HIS	6.496593	61.077	HIS
3VP5	149	HIS	4.350835	49.264	HIS
3QZN	168	HIS	6.973181	70.767	HIS
4CDP	193	HIS	4.417630	74.031	HIS
2J0P	196	HIS	4.310325	75.104	HIS
501L	198	HIS	4.305405	66.467	HIS

 Table B.25:
 HEM: All Planar Angles (continued)

2	Annihe	s Code.t	oistance		Code
PDB ID	Residue	Residue/	Mean	Angle	Residue
501M	198	HIS	4.392715	64.463	HIS
4MF9	209	HIS	4.606487	63.203	HIS
$1 \mathrm{QHU}$	213	HIS	4.734866	79.430	HIS
$1 \mathrm{QJS}$	213	HIS	4.696712	82.802	HIS
6A2J	216	HIS	4.601722	63.468	HIS
$1\mathrm{QHU}$	222	HIS	6.740296	77.401	HIS
2IIZ	224	HIS	4.533607	61.464	HIS
$1 \mathrm{QHU}$	265	HIS	4.200094	83.910	HIS
$1 \mathrm{QJS}$	266	HIS	4.484379	82.026	HIS
6A2J	278	HIS	4.655598	63.931	HIS
2IPS	351	HIS	4.125792	28.391	HIS
7C74	351	HIS	4.494179	25.953	HIS
7DMR	351	HIS	4.201640	31.126	HIS
3HX9	9	ILE	9.558396	78.071	ILE
4NL5	9	ILE	5.756873	80.656	ILE
4JET	30	ILE	6.988601	55.096	ILE
206P	48	ILE	5.365972	44.466	ILE
4B8N	55	ILE	5.758462	70.943	ILE
2FC2	63	ILE	6.106378	69.135	ILE
2E2Y	68	ILE	5.517060	80.623	ILE
3VP5	71	ILE	6.407016	71.208	ILE
2E2Y	99	ILE	6.130795	52.979	ILE
2SPL	99	ILE	6.223033	48.696	ILE
$5\mathrm{CN5}$	99	ILE	6.410362	54.086	ILE
2E2Y	107	ILE	6.704700	16.195	ILE
2SPL	107	ILE	6.505472	17.465	ILE
$5\mathrm{CN5}$	107	ILE	6.767432	16.093	ILE
4UZV	111	ILE	5.897899	46.982	ILE
2Q6N	114	ILE	6.560571	9.779	ILE
2VEB	116	ILE	6.573571	81.358	ILE
3QZZ	116	ILE	6.472356	81.312	ILE
3ZJS	116	ILE	6.518950	85.700	ILE
206P	121	ILE	6.852081	79.662	ILE
3SIK	129	ILE	6.189129	72.935	ILE
3SIK	131	$\mathbf{H}\mathbf{E}$	6.481115	75,292	$\Pi E$

 Table B.25:
 HEM: All Planar Angles (continued)

	Annipe	s code.t	-istance		Code.Y
PDB IV	Residue	Residue	Mean Dr	Angle	Residue/
2VEB	137	ILE	6.361213	61.323	ILE
3QZZ	137	ILE	6.393964	65.377	ILE
3ZJS	137	ILE	6.315026	65.712	ILE
3QZN	159	ILE	5.866079	87.212	ILE
3QZN	164	ILE	6.384201	78.779	ILE
28H1	105	ΠF	6 216303	34 944	ЦF
2D115 2EC2	155 914		6 545005	50.848	
201L	214	ILE	6 02/051	09.848 24.807	ILE
501L 501M	222		6.024951	24.097	
201M 2017	222		6.420481	30.392 80 524	
2112	220		0.430401	80.324	11.15
501L	227	ILE	6.973430	56.638	ILE
4CDP	252	ILE	6.178209	87.181	ILE
2J0P	255	ILE	6.197370	88.613	ILE
6A2J	265	ILE	6.271826	86.089	ILE
4MF9	268	ILE	6.092502	87.522	ILE
2Q6N	363	ILE	6.794813	63.519	ILE
2Q6N	435	ILE	6.531691	62.893	ILE
5VEU	442	ILE	6.119535	59.766	ILE
4I3Q	443	ILE	5.985023	55.615	ILE
2CJ0	32	LEU	5.757197	86.436	LEU
2CPO	32	LEU	5.913058	85.779	LEU
2J18	32	LEU	5.760472	86.600	LEU
1B5M	46	LEU	5.848737	58.371	LEU
1ICC	46	LEU	5.941384	55.221	LEU
1U9U	46	LEU	5.958763	65.230	LEU
1SY2	57	LEU	6.145372	80.845	LEU
3MVF	57	LEU	6.242544	82.824	LEU
3TGC	57	LEU	6.147624	82.612	LEU
4B8N	70	LEU	6.456250	84.030	LEU
1B2V	77	LEU	6.429830	74.863	LEU
1DK0	77	LEU	6.502332	70.907	LEU
1DKH	77	LEU	6.345588	81.197	LEU
2CN4	77	LEU	6.548785	64.950	LEU
4UZV	79	LEU	6.352126	32.691	LEU
2E2Y	.9	LEU	6 167984	57 194	LEU

 Table B.25:
 HEM: All Planar Angles (continued)

	Annipe	s çode.t	Oistance		Code."
PDB II	Residue/	Residue	Mean	Angle	Residue
2SPL	89	LEU	$\begin{array}{c} 6.446644 \\ 6.607510 \\ 6.499175 \\ 6.801707 \\ 6.384225 \end{array}$	54.572	LEU
5CN5	89	LEU		81.740	LEU
4CDP	90	LEU		53.089	LEU
4UZV	102	LEU		80.742	LEU
2E2Y	104	LEU		42.486	LEU
2SPL	104	LEU	6.518599	49.950	LEU
5CN5	104	LEU	6.517400	40.971	LEU
1P3T	119	LEU	6.709401	29.938	LEU
1SY2	123	LEU	5.902915	71.098	LEU
3MVF	123	LEU	5.891492	77.839	LEU
3TGC	123	LEU	$5.908675 \\ 6.731689 \\ 6.241713 \\ 6.341681 \\ 6.315080$	73.018	LEU
5KZL	127	LEU		26.021	LEU
1SY2	133	LEU		67.620	LEU
3MVF	133	LEU		74.740	LEU
3TGC	133	LEU		69.684	LEU
5KZL	136	LEU	$\begin{array}{c} 6.422701 \\ 6.717099 \\ 6.110494 \\ 6.331426 \\ 6.534813 \end{array}$	84.272	LEU
1N45	138	LEU		17.508	LEU
1VGI	138	LEU		28.406	LEU
2VEB	142	LEU		30.581	LEU
3QZZ	142	LEU		26.402	LEU
3ZJS	142	LEU	6.289922	24.952	LEU
1N45	147	LEU	6.115862	65.024	LEU
2R7A	167	LEU	6.508147	65.218	LEU
5O1L	171	LEU	5.743071	78.726	LEU
2IIZ	255	LEU	6.075868	6.622	LEU
2R7A	257	LEU	5.559331	$26.488 \\ 60.469 \\ 68.323 \\ 63.062 \\ 56.669$	LEU
2IIZ	286	LEU	5.566800		LEU
2IPS	417	LEU	6.792313		LEU
2IPS	433	LEU	5.458537		LEU
7C74	433	LEU	5.275537		LEU
7DMR	433	LEU	5.225161	71.791	LEU
2Q6N	437	LEU	5.864970	68.730	LEU
3VP5	145	LYS	5.832567	22.419	LYS
5O1M	167	LYS	5.125712	80.116	LYS
3QZN	84	MET	6.337233	82.368	MET

 Table B.25:
 HEM: All Planar Angles (continued)

	Numbe	st Code.7	. stalle		Code.3
PDB ID	Residue	Residue	Neath Di	Angle	Residue
1B2V	140	MET	6.218846	78.617	MET
1DK0	140	MET	6.185917	75.977	MET
1DKH	140	MET	6.519598	80.084	MET
$2\mathrm{CN4}$	140	MET	5.816277	79.067	MET
4JET	147	MET	5.810508	82.720	MET
4XZD	147	MET	6.297861	74.779	MET
4Y1Q	147	MET	6.115760	72.668	MET
4UZV	151	MET	5.908059	50.673	MET
4CDP	241	MET	6.340896	51.184	MET
2J0P	244	MET	6.821994	47.273	MET
4MF9	257	MET	6.826627	47.678	MET
5VEU	444	MET	6.285199	69.820	MET
4I3Q	445	MET	5.975507	54.809	MET
3HX9	23	PHE	8.679990	57.262	PHE
4NL5	23	PHE	5.580423	79.989	PHE
2SPL	29	PHE	6.129536	67.992	PHE
1B5M	35	PHE	5.848448	51.666	$\mathbf{PHE}$
1ICC	35	PHE	6.276818	51.071	$\mathbf{PHE}$
1U9U	35	PHE	6.094672	55.366	$\mathbf{PHE}$
2SPL	43	PHE	5.815167	43.358	PHE
$5\mathrm{CN5}$	43	PHE	5.981197	45.242	PHE
4B8N	44	PHE	6.120000	52.229	PHE
4JET	50	PHE	6.875792	36.195	PHE
4Y1Q	50	PHE	6.555816	41.424	PHE
4UZV	53	PHE	6.941930	87.835	PHE
2CJ0	57	PHE	6.484645	35.572	PHE
2CPO	57	PHE	6.473913	37.630	PHE
2J18	57	PHE	6.534471	36.396	PHE
1B5M	58	PHE	6.096500	79.544	$\mathbf{PHE}$
1ICC	58	PHE	6.182239	87.840	PHE
4B8N	67	PHE	6.248829	74.088	PHE
4UZV	67	PHE	5.984317	67.843	PHE
1SY2	68	PHE	6.098374	86.062	$\mathbf{PHE}$
3MVF	68	PHE	6.146303	85.237	$\mathbf{PHE}$
$3 \mathrm{TGC}$	68	$\mathbf{PHE}$	6.152796	84.376	$\mathbf{PHE}$

 Table B.25:
 HEM: All Planar Angles (continued)

-	Annipe	s code.t	stance		Code.3
PDB ID	Residue	Residue/	Mean Dr	Angle	Residue /
2VEB	74	PHE	6.405384	85.523	PHE
3QZZ	74	PHE	6.218919	81.733	PHE
3ZJS	74	PHE	6.270262	76.080	PHE
3VP5	76	PHE	6.844578	44.869	PHE
4JET	77	PHE	6.310922	82.490	PHE
4XZD	77	PHE	6.275751	87.170	PHE
4Y1Q	77	PHE	6.412846	87.126	PHE
2VEB	93	PHE	5.810118	22.043	PHE
3QZZ	93	PHE	6.033470	11.038	PHE
3ZJS	93	PHE	5.922481	16.833	PHE
2CJ0	103	PHE	6.182880	27.021	PHE
2CPO	103	PHE	6.396792	28.962	PHE
2J18	103	PHE	6.235843	27.909	PHE
3VP5	112	PHE	6.509162	68.707	PHE
4UZV	119	PHE	5.820671	52.586	PHE
1SI $8$	132	PHE	6.553242	35.834	PHE
1SI $8$	140	PHE	5.575451	44.222	PHE
2VEB	145	PHE	6.211153	71.125	PHE
3QZZ	145	PHE	6.192963	67.209	PHE
3ZJS	145	PHE	6.059949	63.965	PHE
1P3T	181	PHE	5.974488	28.002	PHE
2CJ0	186	PHE	5.833496	74.907	PHE
2CPO	186	PHE	5.891089	74.604	PHE
2J18	186	PHE	5.882819	73.963	PHE
5KZL	195	PHE	6.351090	26.366	PHE
2J0P	199	PHE	6.468406	77.213	PHE
1IPH	206	PHE	6.665963	47.799	PHE
1N45	207	PHE	5.975984	35.914	PHE
1VGI	207	PHE	6.238995	35.601	PHE
1IPH	214	PHE	5.767678	38.797	PHE
2FC2	231	PHE	6.129726	47.062	PHE
4CDP	243	PHE	5.994465	75.432	PHE
2J0P	246	PHE	6.155004	71.919	PHE
2IIZ	257	PHE	5.749045	43.524	PHE
4MF9	259	PHE	5,680334	67502	PHE

 Table B.25:
 HEM: All Planar Angles (continued)

	Numbe	s code	.7 . Alahce		Code:
PDB ID	Residue	Residue	Mean Dr	Angle	Besilie /
7C74	347	PHE	6.478230	66.212	PHE
7DMR	347	PHE	6.671472	71.799	PHE
2BHJ	363	PHE	5.980185	49.593	PHE
2Q6N	429	PHE	6.192258	16.599	PHE
5VEU	434	PHE	6.084164	6.989	PHE
4I3Q	435	PHE	6.161681	12.310	PHE
1ZVI	584	PHE	6.009975	47.157	PHE
2CJ0	28	PRO	6.127671	77.384	PRO
2CPO	28	PRO	6.018197	79.394	PRO
2J18	28	PRO	6.103023	75.350	PRO
2CJ0	30	PRO	5.960531	45.202	PRO
2CPO	30	PRO	6.017188	43.004	PRO
2J18	30	PRO	5.936382	46.559	PRO
1B5M	40	PRO	6.032548	64.686	PRO
1ICC	40	PRO	6.016737	74.979	PRO
1U9U	40	PRO	6.149502	62.201	PRO
4B8N	49	PRO	6.182011	55.551	PRO
1SI $8$	315	PRO	6.539721	79.646	PRO
1IPH	393	PRO	6.703993	79.546	PRO
2Q6N	428	PRO	6.945175	64.749	PRO
5VEU	433	PRO	6.574196	84.362	PRO
4I3Q	434	PRO	6.893037	81.173	PRO
1B2V	42	SER	6.443386	37.867	SER
1DK0	42	SER	6.540219	66.931	SER
1DKH	42	SER	6.070312	84.431	$\operatorname{SER}$
2FC2	59	SER	6.581787	68.948	SER
2E2Y	92	SER	6.454585	87.015	SER
2SPL	92	SER	6.650791	83.681	SER
$5\mathrm{CN5}$	92	SER	6.529632	89.481	SER
1P3T	117	SER	5.531584	72.173	SER
5 GJ3	124	SER	10.238794	71.645	SER
5KZL	131	SER	6.438631	67.739	SER
1N45	142	SER	6.525024	45.908	SER
1VGI	142	SER	5.700272	44.929	SER
4MYP	205	SER	6.655356	71.936	SER

 Table B.25:
 HEM: All Planar Angles (continued)

	Numbe	si Code. ⁷	. Stance		Code.5
PDB ID	Residue	Residue	Mean Dr	Angle	Residue
6A2J	261	SER	6.949581	69.073	SER
1QHU	266	SER	6.680148	46.159	SER
1QJS	267	SER	6.730283	37.983	SER
1IPH	414	SER	6.728176	7.127	SER
1DK0	33	THR	6.991008	82.730	THR
2R7A	52	THR	5.945515	75.272	THR
2E2Y	67	THR	6.891096	23.524	THR
3VP5	68	THR	6.164947	65.743	THR
4XZD	82	THR	6.830323	42.191	THR
1B2V	84	THR	6.798527	48.773	THR
1DK0	84	THR	6.799510	46.371	THR
1DKH	84	THR	6.267175	13.394	THR
$2\mathrm{CN4}$	84	THR	6.804573	47.318	THR
1SY2	121	THR	6.333312	76.088	THR
3MVF	121	THR	6.595150	73.083	THR
3TGC	121	THR	6.343084	72.698	THR
3VP5	130	THR	5.980868	66.884	THR
1N45	135	THR	6.713859	87.717	THR
1VGI	135	THR	6.883314	86.934	THR
501M	168	THR	6.373467	86.011	THR
6A2J	178	THR	6.772182	40.134	THR
501L	194	THR	6.305648	88.159	THR
501M	194	THR	6.409916	87.811	THR
4MF9	208	THR	6.202558	72.980	THR
501L	230	THR	6.574103	56.973	THR
501M	230	THR	6.603918	48.514	THR
2Q6N	302	$\mathrm{THR}$	5.748396	11.940	$\mathrm{THR}$
4I3Q	309	THR	6.214341	29.056	THR
5VEU	309	THR	5.895842	31.467	THR
2E2Y	43	TRP	5.845537	63.663	TRP
2FC2	56	TRP	5.737975	58.198	$\operatorname{TRP}$
3QZZ	60	$\mathrm{TRP}$	6.491833	87.108	TRP
3ZJS	60	TRP	6.366999	80.062	TRP
3HX9	66	TRP	7.852796	51.391	$\operatorname{TRP}$
4NL5	66	TRP	6.235302	53.548	TRP

 Table B.25:
 HEM: All Planar Angles (continued)

_	Annipe	s code			Code.3
PDB ID	Residue	Residue	Neal Dr	Angle	Residue/
2R7A	68	TRP	6.192116	56.988	TRP
1QHU	171	TRP	6.147194	45.734	TRP
1QJS	171	TRP	6.211700	40.663	TRP
2VEB	185	TRP	5.717992	82.552	TRP
3QZZ	185	TRP	6.111800	87.248	TRP
3ZJS	185	TRP	5.960798	85.251	TRP
2BHJ	188	TRP	6.049049	55.507	TRP
2CJ0	213	TRP	6.764355	72.064	TRP
2J18	213	TRP	6.782850	71.352	TRP
2FC2	234	TRP	6.837576	33.085	TRP
1QHU	267	TRP	5.987630	76.604	TRP
1QJS	268	TRP	6.230710	77.078	TRP
2BHJ	366	TRP	6.764735	26.115	TRP
1ZVI	409	TRP	5.660275	56.622	TRP
1ZVI	587	TRP	6.843603	29.680	TRP
1SY2	40	TYR	5.887937	30.456	TYR
3MVF	40	TYR	6.759408	4.606	TYR
3TGC	40	TYR	5.967215	29.632	TYR
206P	52	TYR	6.682161	77.760	TYR
$2\mathrm{CN4}$	55	TYR	6.806239	16.581	TYR
4JET	55	TYR	6.877273	11.357	TYR
4XZD	55	TYR	6.821652	12.231	TYR
4Y1Q	55	TYR	6.699820	8.751	TYR
1SY2	58	TYR	6.964531	86.657	TYR
1U9U	58	TYR	6.232812	76.301	TYR
3ZJS	61	TYR	6.548411	42.808	TYR
2R7A	67	TYR	4.159993	73.259	$\mathrm{TYR}$
1B2V	75	TYR	4.251885	39.160	TYR
1DK0	75	TYR	4.346840	40.042	TYR
1DKH	75	TYR	4.792830	45.976	TYR
2CN4	75	TYR	4.345054	45.523	TYR
4JET	75	TYR	4.420106	47.089	TYR
4XZD	75	TYR	4.329954	46.839	TYR
3QZN	87	TYR	6.251729	84.821	TYR
3VP5	91	TYR	6.574739	32.406	TYR

 Table B.25:
 HEM: All Planar Angles (continued)

	Annipe	5	Code.*		Code.
PDB ID	Residue	Residue	Mean Dr	Angle	Residue/
2O6P	132	TYR	4.055037	56.191	TYR
2O6P	136	TYR	5.148558	86.464	TYR
3SIK	136	TYR	4.260470	52.942	TYR
1B2V	137	TYR	6.232518	27.438	TYR
1DK0	137	TYR	6.186950	32.086	TYR
1DKH	137	TYR	6.409147	26.390	TYR
$2\mathrm{CN4}$	137	TYR	6.142879	28.073	TYR
3SIK	140	TYR	5.120136	63.829	TYR
5 GJ3	140	TYR	7.520130	58.494	TYR
3QZN	170	TYR	5.718488	72.518	TYR
1QHU	204	TYR	6.239544	47.589	TYR
$1 \mathrm{QJS}$	204	TYR	6.225721	48.525	TYR
5 GJ3	239	TYR	4.170326	62.993	TYR
4MYP	280	TYR	4.465249	56.836	TYR
4MYP	289	TYR	5.900895	20.187	TYR
1SI $8$	337	TYR	3.976560	58.339	TYR
1IPH	415	TYR	4.218561	62.200	TYR
1P3T	26	VAL	6.716946	70.533	VAL
1SY2	36	VAL	6.479806	81.825	VAL
3TGC	36	VAL	6.135653	80.270	VAL
1B2V	37	VAL	5.425221	76.657	VAL
1DK0	37	VAL	5.400636	79.308	VAL
1DKH	37	VAL	5.642973	85.568	VAL
1B5M	45	VAL	5.846522	22.834	VAL
1ICC	45	VAL	5.992035	10.185	VAL
1U9U	45	VAL	6.500194	23.361	VAL
1SI $8$	53	VAL	6.238869	22.937	VAL
3HX9	53	VAL	10.092943	16.301	VAL
4NL5	53	VAL	5.909472	26.973	VAL
1B5M	61	VAL	6.074911	50.909	VAL
1ICC	61	VAL	5.726742	49.678	VAL
1U9U	61	VAL	6.163696	55.756	VAL
2SPL	68	VAL	5.598014	66.196	VAL
$5\mathrm{CN5}$	68	VAL	5.556498	70.253	VAL
4B8N	75	VAL	6.033658	36.289	VAL

 Table B.25:
 HEM: All Planar Angles (continued)

~	Annipe	Ş.	Code. ⁴		Coders
208 JD	Residue	Residue	Mean D.	Angle	Residue
2VEB	89	VAL	5.917494	83.599	VAL
3QZZ	89	VAL	5.927268	83.889	VAL
3ZJS	89	VAL	5.790982	89.427	VAL
2O6P	119	VAL	6.176593	82.298	VAL
5KZL	124	VAL	6.607237	84.454	VAL
1SI8	125	VAL	6.016899	42.150	VAL
1IPH	127	VAL	6.256166	18.034	VAL
3VP5	131	VAL	5.568423	66.180	VAL
3VP5	148	VAL	6.888565	79.860	VAL
501L	152	VAL	6.293389	50.217	VAL
5O1M	152	VAL	6.250877	42.675	VAL
3QZN	161	VAL	6.290827	78.263	VAL
6A2J	175	VAL	6.202413	9.481	VAL
6A2J	182	VAL	6.679490	6.095	VAL
4CDP	192	VAL	5.600764	66.470	VAL
2J0P	195	VAL	6.307524	65.521	VAL
501L	197	VAL	6.648164	58.183	VAL
501M	197	VAL	6.631076	62.092	VAL
1IPH	199	VAL	6.294207	46.553	VAL
2IIZ	228	VAL	5.315815	34.144	VAL
2BHJ	346	VAL	6.643571	65.072	VAL
2IPS	354	VAL	6.655642	42.876	VAL
5VEU	369	VAL	6.886497	38.286	VAL
1ZVI	416	VAL	5.960795	36.384	VAL

 Table B.25:
 HEM: All Planar Angles (continued)



PDB ID	Residue Multiple	Residue Code?	Mean Distance	Anele	Residue Code.
5KPF	81	ALA	6.517051	19.673	ALA
$5 \mathrm{LFT}$	81	ALA	6.400723	27.359	ALA
$5\mathrm{T8W}$	81	ALA	6.484127	17.792	ALA

	Annie	ç _e	de.7 Distance		çode.
PDB II	Residue/	Residue	Mean	Angle	Residue
3EAH 2BC5	147 106	ALA ARG	6.240842 5.961420	$65.476 \\ 72.519$	ALA ARG
6WZA	106	ARG	6.631682	36.834	ARG
1BBH	129	ARG	5.790808	84.690	ARG
3EAH	149	ARG	5.803314	30.280	ARG
3EAH	153	ARG	6.514542	31.482	ARG
2BC5	99	ASN	6.936196	74.457	ASN
3X15	12	CYS	6.451594	75.877	CYS
$5 \mathrm{KPF}$	14	CYS	6.631432	78.361	CYS
$5 \mathrm{LFT}$	14	CYS	6.598389	78.924	CYS
$5\mathrm{T8W}$	14	CYS	6.647516	80.130	CYS
6XNK	14	CYS	6.275930	83.242	CYS
2BH5	15	CYS	6.513509	80.908	CYS
3X15	15	CYS	6.178945	60.268	CYS
5KPF	17	CYS	6.098545	57.159	CYS
$5 \mathrm{LFT}$	17	CYS	6.056595	55.965	CYS
5T8W	17	CYS	6.188739	57.751	CYS
6XNK	17	CYS	5.903640	67.256	CYS
1W2L	18	CYS	6.554906	79.901	CYS
2BH5	18	CYS	6.369197	56.447	CYS
1W2L	21	CYS	6.223591	50.740	CYS
2BC5	98	CYS	5.957326	62.529	CYS
6WZA	98	CYS	5.774303	65.838	CYS
2BC5	101	CYS	6.394766	89.234	CYS
6WZA	101	CYS	6.455707	88.190	CYS
1BBH	121	CYS	5.737156	69.070	CYS
1BBH	124	CYS	6.272059	73.170	CYS
3EAH	150	CYS	4.247423	47.992	CYS
6VDQ	317	CYS	6.231170	64.036	CYS
1S56	58	GLN	6.005777	46.505	GLN
1BBH	17	GLU	6.940695	44.648	GLU
3X15	24	GLY	6.352237	71.150	GLY
5KPF	29	GLY	6.052599	68.487	GLY
$5 \mathrm{LFT}$	29	GLY	6.048126	64.422	GLY
$5\mathrm{T8W}$	29	GLY	6.153313	65.660	GLY

 Table B.26: HEC: All Planar Angles (continued)

	Annipe	s code.t	. Distance		çode. ^X
PDB II	Residue	Residue	Mean	Angle	Residue
6XNK 1W2L	29 31	GLY GLY	5.786913 6.565877	$67.542 \\ 60.959$	GLY GLY
2BH5	36	GLY	6.126048	68.830	GLY
3EAH	152	GLY	5.627214	19.760	GLY
3X15	16	HIS	4.360557	56.339	HIS
$5 \mathrm{KPF}$	18	HIS	4.310334	57.026	HIS
5LFT	18	HIS	4.342999	57.434	HIS
$5\mathrm{T8W}$	18	HIS	4.334295	56.673	HIS
6XNK	18	HIS	4.599701	53.280	HIS
2BH5	19	HIS	4.283790	56.825	HIS
1W2L	22	HIS	4.350769	62.051	HIS
1S56	81	HIS	4.475028	80.865	HIS
2BC5	102	HIS	4.186908	82.850	HIS
6WZA	102	HIS	4.440577	87.413	HIS
1BBH	125	HIS	4.218890	89.456	HIS
6VDQ	274	HIS	4.500421	76.928	HIS
6VDQ	313	HIS	4.120545	68.371	HIS
3X15	30	ILE	6.412845	48.363	ILE
1W2L	61	ILE	6.839545	86.856	ILE
6XNK	75	ILE	6.412701	20.309	ILE
1S56	86	ILE	5.878780	46.879	ILE
6VDQ	278	ILE	5.358791	51.036	ILE
2BC5	3	LEU	6.742954	75.724	LEU
6WZA	3	LEU	6.697674	65.670	LEU
2BC5	10	LEU	6.154091	81.531	LEU
6WZA	10	LEU	6.067786	77.978	LEU
5KPF	32	LEU	6.145036	62.380	LEU
5LFT	32	LEU	6.106815	62.454	LEU
$5\mathrm{T8W}$	32	LEU	5.994375	61.079	LEU
6XNK	32	LEU	6.085909	58.350	LEU
2BH5	39	LEU	5.728784	68.293	LEU
1S56	54	LEU	5.947501	53.661	LEU
5KPF	68	LEU	6.268124	82.295	LEU
$5 \mathrm{LFT}$	68	LEU	6.315525	79.956	LEU
$5\mathrm{T8W}$	68	LEU	6.123569	78.343	LEU

 Table B.26: HEC: All Planar Angles (continued)

	Munipe	s code.	b Vistance		Code
PDB Jr	Residue	Residue-	Mean	Angle	Residue
6VDQ 6VDQ	238 277	LEU LEU	$6.409586 \\ 6.506868$	$33.875 \\ 55.119$	LEU LEU
6XNK	79	LYS	3.938274	74.591	LYS
2BH5	100	LYS	4.313747	77.818	LYS
2BC5	7	MET	4.661903	78.629	MET
6WZA	7	MET	4.611608	76.023	MET
1BBH	19	MET	6.049470	76.193	MET
1W2L	76	MET	4.403618	74.807	MET
1S56	77	MET	6.187616	82.400	MET
5KPF	80	MET	4.692154	69.191	MET
$5 \mathrm{LFT}$	80	MET	4.757864	70.970	MET
$5\mathrm{T8W}$	80	MET	4.693021	71.981	MET
1W2L	34	PHE	5.935685	47.542	PHE
3X15	44	PHE	6.024333	88.840	PHE
1S56	46	PHE	5.938368	40.237	PHE
2BC5	65	PHE	6.201901	7.130	PHE
6WZA	65	PHE	6.184290	8.954	PHE
5KPF	82	PHE	6.311357	54.389	PHE
$5 \mathrm{LFT}$	82	PHE	6.466458	54.125	PHE
$5\mathrm{T8W}$	82	PHE	6.527249	55.006	PHE
2BH5	102	PHE	6.736126	35.502	PHE
3EAH	319	PHE	6.137327	43.608	PHE
6VDQ	320	PHE	6.121894	69.729	PHE
3X15	25	PRO	6.252857	53.365	PRO
$5 \mathrm{KPF}$	30	PRO	6.184028	58.382	PRO
$5 \mathrm{LFT}$	30	PRO	6.179273	58.317	PRO
$5\mathrm{T8W}$	30	PRO	6.138272	60.452	PRO
6XNK	30	PRO	5.900245	78.500	PRO
1W2L	32	PRO	6.457693	61.577	PRO
2BH5	37	PRO	6.202537	54.969	PRO
$5 \mathrm{KPF}$	71	PRO	6.976183	22.212	PRO
5LFT	71	PRO	6.983064	24.358	PRO
$5\mathrm{T8W}$	71	PRO	6.909375	23.188	PRO
1W2L	77	PRO	6.071845	79.721	PRO
1W2L	60	SER	6.470812	29.839	SER

 Table B.26: HEC: All Planar Angles (continued)

	Annipe	5	Code. ⁴		Coders
PDB III	Residue	Residue	Mean	Angle	Residue/
6XNK	28	THR	6.983672	89.881	THR
6VDQ	309	THR	6.443589	76.554	THR
3EAH	144	TRP	5.647844	55.208	$\mathrm{TRP}$
6VDQ	271	$\operatorname{TRP}$	5.880644	62.992	$\mathrm{TRP}$
3EAH	322	$\operatorname{TRP}$	6.529256	31.513	$\mathrm{TRP}$
1BBH	16	$\mathrm{TYR}$	4.795494	83.790	TYR
1S56	33	TYR	6.252015	73.693	TYR
1BBH	58	TYR	6.554347	74.986	TYR
5KPF	67	TYR	5.922923	73.698	TYR
$5 \mathrm{LFT}$	67	TYR	5.919346	72.327	TYR
$5\mathrm{T8W}$	67	TYR	5.858639	72.392	TYR
6XNK	67	TYR	5.613420	78.584	TYR
2BH5	79	TYR	5.535216	66.731	TYR
1W2L	80	TYR	6.249808	80.939	TYR
6VDQ	310	TYR	6.768220	38.505	TYR
1W2L	75	VAL	6.753821	70.180	VAL
1S56	80	VAL	6.205932	89.256	VAL
2BH5	80	VAL	6.887770	66.644	VAL
6XNK	83	VAL	6.004096	49.708	VAL
1S56	94	VAL	6.626107	47.118	VAL
1S56	126	VAL	6.029592	82.902	VAL
3EAH	151	VAL	6.103944	46.478	VAL

 Table B.26: HEC: All Planar Angles (continued)

 Table B.27:
 SRM: All Planar Angles

PDB ID	Residue Numbe	Residue Code	Mean Distance	Angle	Residue Code.5
1ZJ8	468	ALA	6.774896	67.235	ALA
3B0G	486	ALA	6.469408	53.215	ALA
3VKP	486	ALA	6.471195	63.024	ALA
3VLX	486	ALA	6.481752	63.686	ALA
3VLY	486	ALA	6.503895	62.464	ALA

	Annipe	s code.4			Code.5
PDB ID	Residue /	Residue	Mean Dr.	Angle	Residue/
3VLZ	486	ALA	6.507235	52.788	ALA
5 H8 V	545	ALA	6.528336	65.454	ALA
2AOP	83	ARG	5.905472	47.714	ARG
1ZJ8	97	ARG	5.632921	36.797	ARG
2AKJ	109	ARG	5.624044	45.808	ARG
3B0G	109	ARG	5.714505	49.905	ARG
3VKP	109	ARG	5.727950	45.457	ARG
3VLX	109	ARG	5.657293	44.382	ARG
3VLY	109	ARG	5.670401	44.269	ARG
3VLZ	109	ARG	5.666461	48.083	ARG
$5 \mathrm{H8V}$	124	ARG	5.731236	44.003	ARG
2AOP	153	ARG	6.898322	85.374	ARG
1ZJ8	166	ARG	6.411696	86.955	ARG
2AKJ	179	ARG	6.270969	87.072	ARG
3B0G	179	ARG	6.332302	75.820	ARG
3VKP	179	ARG	6.261289	85.962	ARG
3VLX	179	ARG	6.332845	87.012	ARG
3VLY	179	ARG	6.349458	86.279	ARG
3VLZ	179	ARG	6.432708	75.861	ARG
5 H8 V	193	ARG	6.748373	86.970	ARG
2AOP	116	ASN	6.627004	77.523	ASN
1ZJ8	465	ASN	6.589731	74.338	ASN
2AOP	481	ASN	6.568014	76.265	ASN
3B0G	483	ASN	6.105308	61.801	ASN
3VKP	483	ASN	6.093849	72.638	ASN
3VLX	483	ASN	6.149563	73.596	ASN
3VLY	483	ASN	6.199685	72.914	ASN
3VLZ	483	ASN	6.172324	60.497	ASN
2AKJ	484	ASN	6.180565	72.711	ASN
5H8V	542	ASN	6.517505	79.233	ASN
1ZJ8	129	ASP	6.873987	67.150	ASP
1ZJ8	467	CYS	4.642760	87.220	CYS
2AOP	483	CYS	4.593058	85.931	CYS
3B0G	485	CYS	4.334547	73.017	CYS
3VKP	485	CYS	4.338921	84.887	CYS

 Table B.27: SRM: All Planar Angles (continued)

	e Annibe	s code. ⁷	Distance		e Code.
208	Residue	Residue	Mean	Angle	Residue
3VLX	485	CYS	$\begin{array}{c} 4.333556\\ 4.349260\\ 4.361247\\ 4.400598\\ 6.918908\end{array}$	85.502	CYS
3VLY	485	CYS		84.134	CYS
3VLZ	485	CYS		73.065	CYS
2AKJ	486	CYS		86.391	CYS
5H8V	494	CYS		18.748	CYS
5H8V	544	CYS	$\begin{array}{c} 4.294361 \\ 6.832109 \\ 6.870508 \\ 6.725078 \\ 6.644058 \end{array}$	85.621	CYS
2AOP	121	GLN		25.136	GLN
1ZJ8	134	GLN		22.173	GLN
5H8V	161	GLN		29.150	GLN
2AOP	482	GLY		75.745	GLY
2AOP	484	GLY	6.751562	$\begin{array}{c} 83.876 \\ 79.167 \\ 78.451 \\ 51.736 \\ 61.416 \end{array}$	GLY
2AKJ	487	GLY	6.536313		GLY
5H8V	543	GLY	6.487994		GLY
1ZJ8	207	LYS	5.279599		LYS
1ZJ8	209	LYS	5.254105		LYS
2AOP 2AOP 2AKJ 3B0G 3VKP	<ul><li>215</li><li>217</li><li>224</li><li>224</li><li>224</li></ul>	LYS LYS LYS LYS LYS	5.521547 5.485034 5.292960 5.579947 5.500133	$\begin{array}{c} 41.259 \\ 57.432 \\ 53.525 \\ 59.557 \\ 56.004 \end{array}$	LYS LYS LYS LYS LYS
3VLX	224	LYS	5.605021	56.372	LYS
3VLY	224	LYS	5.637976	59.364	LYS
3VLZ	224	LYS	5.601385	52.886	LYS
3VLY	226	LYS	5.485627	52.123	LYS
3VLZ	226	LYS	5.641233	47.713	LYS
5H8V	276	LYS	$\begin{array}{c} 5.805329\\ 5.495851\\ 6.539429\\ 6.504302\\ 6.814343\end{array}$	50.247	LYS
5H8V	278	LYS		53.934	LYS
1ZJ8	466	SER		45.045	SER
2AKJ	485	SER		77.035	SER
2AKJ	142	THR		68.034	THR
3B0G 3VKP 3VLX 3VLY 3VLZ	142 142 142 142 142	THR THR THR THR THR	$\begin{array}{c} 6.442796 \\ 6.428882 \\ 6.455248 \\ 6.452740 \\ 6.394057 \end{array}$	$\begin{array}{c} 66.277 \\ 73.086 \\ 73.866 \\ 72.255 \\ 69.555 \end{array}$	THR THR THR THR THR

 Table B.27: SRM: All Planar Angles (continued)

	Annhe	\$	Code.4 aistance		Code.
EDB ID	Residue/	Residue	Meon D.	Angle	Residue
5H8V	156	THR	6.490994	74.765	THR
3B0G	484	THR	6.402854	34.005	THR
3VKP	484	THR	6.412766	38.529	THR
3VLX	484	THR	6.401875	38.523	THR
3VLY	484	THR	6.414362	37.480	THR
3VLZ	484	THR	6.437540	35.092	THR
1ZJ8	69	TYR	6.963349	17.492	TYR
5H8V	106	TYR	6.992106	27.541	TYR

 Table B.27: SRM: All Planar Angles (continued)

Table B.28:	VERDOHEME:	All Planar	Angles

2	Anthe	5	Cole.*		Code.7
EDB ID	Residue	Residue	Meon D.	Angle	Residue
2ZVU	28	ALA	6.962159	60.211	ALA
3MOO	136	ASP	6.778611	59.636	ASP
2ZVU	140	ASP	6.674210	53.858	ASP
3MOO	24	GLU	6.275511	34.237	GLU
2ZVU	29	GLU	6.221641	12.615	GLU
3MOO	135	GLY	5.288496	66.356	GLY
2ZVU	139	GLY	5.265696	66.938	GLY
3MOO	139	GLY	5.369017	35.165	GLY
3MOO	140	GLY	6.027517	69.523	GLY
2ZVU	143	GLY	5.436145	32.937	GLY
2ZVU	144	GLY	5.902504	68.684	GLY
3MOO	20	HIS	4.614778	65.389	HIS
2ZVU	25	HIS	4.603252	70.790	HIS
3MOO	134	LEU	6.100073	27.652	LEU
2ZVU	138	LEU	6.249768	37.499	LEU
3MOO	201	PHE	5.958999	31.400	PHE
2ZVU	207	PHE	6.037412	29.522	PHE
3MOO	138	SER	5.886820	52.337	SER
2ZVU	142	SER	6.048311	54.957	SER

	Aunthe	ş C	de.7 wance		cole.7
EDB ID	Residue	Residue	Mean Dis	Angle	Residue
2ZVU	135	THR	6.765195	89.631	THR
3MOO 1TWN 1TWR 1TWN 1TWR 1TWN 1TWR 1TWN 1TWR	$     \begin{array}{r}       131 \\       140 \\       140 \\       29 \\       29 \\       29 \\       139 \\       139 \\       143 \\       143 \\       143     \end{array} $	VAL ASP GLU GLU GLY GLY GLY GLY	$\begin{array}{c} 6.796515\\ 6.273979\\ 6.553790\\ 6.123574\\ 6.517157\\ 5.092800\\ 5.369385\\ 5.231213\\ 5.836559\end{array}$	$\begin{array}{c} 89.945\\ 75.887\\ 73.555\\ 35.411\\ 50.624\\ 37.268\\ 36.457\\ 20.583\\ 26.276\end{array}$	VAL ASP ASP GLU GLU GLY GLY GLY GLY
1TWN 1TWR 1TWR 1TWR 1TWR 1TWN 1TWR 1TWR	144     25     25     138     138     207     207     142	GLY HIS HIS LEU LEU PHE PHE SER	$\begin{array}{c} 6.024952\\ 4.673370\\ 4.786588\\ 6.399559\\ 6.579770\\ 6.263716\\ 6.447849\\ 6.035867\end{array}$	48.406 82.070 75.802 8.072 2.665 53.897 51.949 26.649	GLY HIS HIS LEU LEU PHE PHE SER
1TWR 1TWN	142 135	SER THR	6.195017 6.865192	$40.009 \\71.849$	$\frac{\text{SER}}{\text{THR}}$

 Table B.28:
 VERDOHEME: All Planar Angles (continued)

# B.6 All CA-CB-Fe Angles

PDB ID	Residue Numbe	Residue Code.*	Mean Distance	Residue Code.Y	Augle
1N45	28	ALA	6.981230	ALA	133.1800
2CJ0	31	ALA	5.440871	ALA	114.8710
2CPO	31	ALA	5.505123	ALA	115.0400
2J18	31	ALA	5.457126	ALA	114.2550
1SY2	42	ALA	6.006055	ALA	148.0360

 Table B.29:
 HEM: All CA-CB-Fe Angles

	Annipe	ş	ode. ⁴		Code.7
PDB ID	Residue	Residue	Mean Dis	Residue	Angle
3MVF	42	ALA	5.827660	ALA	147.3790
$3 \mathrm{TGC}$	42	ALA	6.033598	ALA	151.3290
2O6P	49	ALA	6.356063	ALA	69.6260
4B8N	54	ALA	6.390793	ALA	135.4860
1B5M	67	ALA	5.797296	ALA	143.9450
1ICC	67	ALA	6.085233	ALA	131.3420
1U9U	67	ALA	6.016697	ALA	136.6100
2CJ0	71	ALA	6.531120	ALA	140.1920
2CPO	71	ALA	6.539227	ALA	137.2830
2J18	71	ALA	6.477348	ALA	139.0360
4NL5	71	ALA	6.805378	ALA	99.7605
4Y1Q	75	ALA	6.722226	ALA	130.5910
1P3T	121	ALA	6.382367	ALA	48.9641
3SIK	138	ALA	6.231014	ALA	159.2210
2R7A	169	ALA	5.223004	ALA	132.6020
6A2J	180	ALA	6.687029	ALA	43.4302
2BHJ	191	ALA	6.261711	ALA	163.9660
6A2J	220	ALA	5.986896	ALA	140.0610
6A2J	259	ALA	6.937825	ALA	40.3063
4MYP	282	ALA	6.581195	ALA	153.2720
4MYP	293	ALA	6.207799	ALA	133.2580
2Q6N	298	ALA	5.672036	ALA	129.8410
4I3Q	305	ALA	5.305272	ALA	115.6050
5VEU	305	ALA	6.219660	ALA	130.5820
1ZVI	412	ALA	6.481380	ALA	147.8760
2Q6N	442	ALA	6.935846	ALA	147.6550
5VEU	447	ALA	6.667315	ALA	149.4040
4I3Q	448	ALA	6.441232	ALA	146.6870
4JET	40	ARG	5.660400	ARG	117.6700
4XZD	40	ARG	5.892195	ARG	118.8830
4Y1Q	40	ARG	5.725205	ARG	121.1480
3SIK	54	ARG	6.090293	ARG	163.0460
2FC2	61	ARG	6.072553	ARG	76.2562
2FC2	65	ARG	6.459491	ARG	70.9521
4CDP	100	ARG	5.360373	ARG	139.0430

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

	NIIIIDE	s code. ⁵	. Stance	Code.3	
PDB ID	Residue	Residue	Mean Dr	Residue	Angle
2J0P	102	ARG	5.002395	ARG	139.6090
4UZV	105	ARG	6.689489	ARG	101.6930
4MF9	112	ARG	5.056393	ARG	134.9890
4JET	144	ARG	6.239587	ARG	94.9228
4XZD	144	ARG	6.335714	ARG	98.1313
4Y1Q	144	ARG	6.425880	ARG	98.5684
2BHJ	193	ARG	5.745098	ARG	61.6429
2BHJ	197	ARG	6.221230	ARG	67.6390
4I3Q	212	ARG	6.392849	ARG	133.1990
1QHU	214	ARG	6.588734	ARG	137.0270
$1 \mathrm{QJS}$	214	ARG	6.249190	ARG	70.2144
6A2J	217	ARG	6.781589	ARG	54.8831
2IIZ	242	ARG	5.236889	ARG	162.0190
1SI $8$	333	ARG	5.247624	ARG	116.1170
2IPS	348	ARG	6.336679	ARG	87.8395
7C74	348	ARG	6.274279	ARG	78.0301
7DMR	348	ARG	6.250958	ARG	82.5509
1IPH	411	ARG	5.321024	ARG	108.2630
1ZVI	414	ARG	5.799426	ARG	71.6516
1ZVI	418	ARG	6.259544	ARG	69.7795
4NL5	7	ASN	5.402231	ASN	170.5520
1B2V	41	ASN	6.894251	ASN	79.4068
1DK0	41	ASN	6.870425	ASN	80.6960
1P3T	118	ASN	6.625279	ASN	26.9658
1SI8	127	ASN	6.666708	ASN	103.3680
1IPH	201	ASN	6.396844	ASN	101.2860
2BHJ	364	ASN	6.955669	ASN	23.4362
2IPS	437	ASN	6.276979	ASN	111.3700
7C74	437	ASN	6.653391	ASN	112.3740
7DMR	437	ASN	6.591349	ASN	110.5710
5VEU	440	ASN	6.408862	ASN	56.4019
4I3Q	441	ASN	6.139159	ASN	60.3712
1P3T	27	ASP	6.267807	ASP	103.4810
2E2Y	64	ASP	6.865050	ASP	101.7770
2IPS	108	ASP	5.870986	ASP	152.6010

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

	Annihe	s code.4	talle	code.y	
PDB ID	Residue	Residue	Mean Dis	Residue /	Angle
7C74	108	ASP	6.017401	ASP	160.5440
7DMR	108	ASP	6.266021	ASP	151.6240
1N45	140	ASP	6.389011	ASP	35.7360
1VGI	140	ASP	6.566393	ASP	22.5121
2IIZ	151	ASP	5.861207	ASP	97.0879
4CDP	191	ASP	6.789427	ASP	101.3160
2J0P	194	ASP	6.862392	ASP	107.8210
$1\mathrm{QHU}$	203	ASP	6.920576	ASP	76.4671
1QJS	203	ASP	6.878437	ASP	70.4888
2IIZ	284	ASP	6.598336	ASP	144.2720
2CJ0	29	CYS	4.390905	CYS	117.5660
2CPO	29	CYS	4.443549	CYS	118.1890
2J18	29	CYS	4.359887	CYS	118.4250
2FC2	62	CYS	4.482879	CYS	112.5820
1P3T	113	CYS	6.881310	CYS	62.2220
2BHJ	194	CYS	4.487497	CYS	118.0500
1ZVI	415	CYS	4.181834	CYS	112.7440
2Q6N	436	CYS	4.305637	CYS	109.8240
5VEU	441	CYS	4.349464	CYS	106.7690
4I3Q	442	CYS	4.085782	CYS	103.9950
2IPS	105	GLN	5.981590	GLN	100.5170
7C74	105	GLN	5.667218	GLN	97.8161
7DMR	105	GLN	5.517249	GLN	100.6130
2R7A	253	GLN	6.081153	GLN	123.5700
6A2J	258	GLN	5.803666	GLN	91.0438
4MYP	292	GLN	6.537566	GLN	16.1591
1N45	29	GLU	6.277510	GLU	93.8698
1VGI	29	GLU	6.279863	GLU	118.3990
501L	148	GLU	6.440638	GLU	94.5791
2CJ0	183	GLU	5.716050	GLU	106.0810
2CPO	183	GLU	5.799506	GLU	105.9460
2J18	183	GLU	5.722472	GLU	107.1960
1QHU	225	GLU	6.177350	GLU	167.2860
$1 \mathrm{QJS}$	226	GLU	6.465511	GLU	155.6740
2IPS	258	GLU	6.388898	GLU	174.0360

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

0	Annipe	ç _e	de.7 vistance	Çoç	e.t
PDB II	Residue	Residue	Mean	Residue/	Angle
7C74	258	GLU	6.258582	GLU	160.0830
7DMR	258	GLU	6.172262	GLU	155.5410
2Q6N	439	GLU	6.270464	GLU	58.8909
1ZVI	592	GLU	6.601349	GLU	140.0500
1P3T	23	HIS	4.573926	HIS	111.7580
1N45	25	HIS	4.545004	HIS	112.7600
1VGI	25	HIS	4.646180	HIS	113.1630
1B2V	32	HIS	4.667618	HIS	116.3150
1DK0	32	HIS	4.556145	HIS	116.4470
1DKH	32	HIS	5.099382	HIS	121.3750
1R5M	30	HIS	4 456809	HIS	101 8130
1ICC	30	HIS	4.4500005 4.542187	HIS	101.0150 101.5070
1U9U	39	HIS	4589294	HIS	101.9010 102.2750
4B8N	48	HIS	4 479396	HIS	102.2150
1SI8	10 54	HIS	5 688888	HIS	131.6120
1010	51		4.045207		100.0700
15Y2	59	HIS	4.045387	HIS	126.3700
	59 50	ПІЗ	4.000882	шо	120.0770 124.2700
31GU 1D5M	09 62	пі5	4.100823	ПI2 ПI2	124.3700
	00 62		4.211990		123.0300 114.1200
nee	60	піб	4.401280	П15	114.1290
1U9U	63	HIS	4.417873	HIS	116.0130
2SPL	64	HIS	5.889080	HIS	103.2250
5CN5	64	HIS	5.804727	HIS	107.1420
4B8N	71	HIS	4.416116	HIS	119.3920
3VP5	72	HIS	4.371971	HIS	101.6570
4NL5	75	HIS	4.473936	HIS	117.7090
4JET	81	HIS	5.381133	HIS	121.2740
4XZD	81	HIS	5.263108	HIS	114.4420
4Y1Q	81	HIS	5.294289	HIS	126.8310
1B2V	83	HIS	5.366599	HIS	102.9160
1DK0	83	HIS	5 314133	HIS	102 7520
1DKH	83	HIS	5.223800	HIS	122.9600
2CN4	83	HIS	5.251875	HIS	$107\ 5140$
2E2Y	93	HIS	4.514535	HIS	114.4980
2SPL	93	HIS	4.578545	HIS	112.4730

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

Ð	Anthe	s cole. ⁵	Distance	Code.y	
PDB 1	Residue	Residue	Mean	Residue	Angle
5CN5 2E2Y	93 97	HIS HIS	4.575365 5.917056	HIS HIS	113.1870 177.1860 176.0860
2SPL 5CN5 4UZV	97 97 106	HIS HIS HIS	$5.997752 \\ 5.966408 \\ 4.502311$	HIS HIS HIS	$   \begin{array}{r}     176.0860 \\     177.3970 \\     110.2430   \end{array} $
2IPS 7C74 7DMR 2VEB	109 109 109 120	HIS HIS HIS HIS	$5.924623 \\ 5.952700 \\ 5.699226 \\ 4.471709$	HIS HIS HIS HIS	93.6174 93.3571 93.5665 110.4880
3QZZ 3ZJS 1IPH	120 120 128	HIS HIS HIS	$\begin{array}{c} 4.599066\\ 4.427156\\ 5.713777\end{array}$	HIS HIS HIS	109.3460 110.7000 129.2180
206P 3VP5 4CDP	134 149 193	HIS HIS HIS	$\begin{array}{c} 6.496593 \\ 4.350835 \\ 4.417630 \end{array}$	HIS HIS HIS	146.7790 100.8200 109.7720
2J0P 5O1L 5O1M 4MF9 1QHU	196 198 198 209 213	HIS HIS HIS HIS HIS	$\begin{array}{c} 4.310325\\ 4.305405\\ 4.392715\\ 4.606487\\ 4.734866\end{array}$	HIS HIS HIS HIS HIS	$111.1620 \\102.4410 \\100.3070 \\108.6490 \\114.5350$
1QJS 6A2J 1QHU 2IIZ 1QHU	213 216 222 224 265	HIS HIS HIS HIS HIS	$\begin{array}{c} 4.696712\\ 4.601722\\ 6.740296\\ 4.533607\\ 4.200094 \end{array}$	HIS HIS HIS HIS HIS	122.0930 122.2890 173.7070 124.3380 121.1810
1QJS 6A2J 2IPS 7C74 7DMR	266 278 351 351 351	HIS HIS HIS HIS HIS	$\begin{array}{c} 4.484379\\ 4.655598\\ 4.125792\\ 4.494179\\ 4.201640\end{array}$	HIS HIS HIS HIS HIS	$\begin{array}{c} 120.9930\\ 124.6210\\ 94.9759\\ 92.7950\\ 96.7615\end{array}$
4NL5 4JET 2O6P 4B8N 2FC2	9 30 48 55 63	ILE ILE ILE ILE ILE	5.756873 6.988601 5.365972 5.758462 6.106378	ILE ILE ILE ILE ILE	$\begin{array}{c} 125.9250\\ 147.5590\\ 141.3220\\ 101.7060\\ 55.1533\end{array}$

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

-	Aunthe	s code. ⁴	-istance	Code.3	
PDB II	Residue	Residue	Mean Dr	Resitue	Angle
2E2Y	68	ILE	5.517060	ILE	97.7283
3VP5	71	ILE	6.407016	ILE	105.2440
2E2Y	99	ILE	6.130795	ILE	160.7990
2SPL	99	ILE	6.223033	ILE	157.6520
$5\mathrm{CN5}$	99	ILE	6.410362	ILE	160.0190
2E2Y	107	ILE	6.704700	ILE	171.6940
2SPL	107	ILE	6.505472	ILE	170.3470
5CN5	107	ILE	6.767432	ILE	172.1900
4UZV	111	ILE	5.897899	ILE	140.3930
2Q6N	114	ILE	6.560571	ILE	116.0170
2VEB	116	ILE	6.573571	ILE	101.7820
3QZZ	116	ILE	6.472356	ILE	100.9480
3ZJS	116	ILE	6.518950	ILE	103.0000
2O6P	121	ILE	6.852081	ILE	132.2050
3SIK	129	ILE	6.189129	ILE	165.5190
3SIK	131	ILE	6.481115	ILE	134.1420
2VEB	137	ILE	6.361213	ILE	179.1050
3QZZ	137	ILE	6.393964	ILE	177.4290
3ZJS	137	ILE	6.315026	ILE	177.5600
2BHJ	195	ILE	6.216303	ILE	54.9628
2FC2	214	ILE	6.545905	ILE	136.6930
501L	222	ILE	6.024951	ILE	133.4090
501M	222	ILE	6.241067	ILE	136.2240
2IIZ	225	ILE	6.430481	ILE	59.8660
501L	227	ILE	6.973430	ILE	87.0131
4CDP	252	ILE	6.178209	ILE	160.7780
2J0P	255	ILE	6.197370	ILE	154.1260
6A2J	265	ILE	6.271826	ILE	147.7330
4MF9	268	ILE	6.092502	ILE	155.0200
2Q6N	363	ILE	6.794813	ILE	150.8430
2Q6N	435	ILE	6.531691	ILE	50.7026
5VEU	442	ILE	6.119535	ILE	59.4678
4I3Q	443	ILE	5.985023	ILE	55.5209
2CJ0	32	LEU	5.757197	LEU	97.6039
2CPO	32	LEU	5.913058	LEU	99.3621

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

	Annipe	s code. ⁴	: stallce	Code	
PDB JD	Residue /	Residue	Mean Du	Residue	Augle
2J18	32	LEU	5.760472	LEU	96.2823
1B5M	46	LEU	5.848737	LEU	104.5310
1ICC	46	LEU	5.941384	LEU	99.3266
1U9U	46	LEU	5.958763	LEU	99.9911
1SY2	57	LEU	6.145372	LEU	142.4070
3MVF	57	LEU	6.242544	LEU	143.0050
$3 \mathrm{TGC}$	57	LEU	6.147624	LEU	140.8920
4B8N	70	LEU	6.456250	LEU	123.0540
1B2V	77	LEU	6.429830	LEU	57.1497
1DK0	77	LEU	6.502332	LEU	58.1793
1DKH	77	LEU	6.345588	LEU	66.1552
$2\mathrm{CN4}$	77	LEU	6.548785	LEU	53.5337
4UZV	79	LEU	6.352126	LEU	105.2350
2E2Y	89	LEU	6.167984	LEU	89.7887
2SPL	89	LEU	6.446644	LEU	83.4261
5CN $5$	89	LEU	6.607510	LEU	97.7142
4CDP	90	LEU	6.499175	LEU	152.7650
4UZV	102	LEU	6.801707	LEU	85.2040
2E2Y	104	LEU	6.384225	LEU	87.1682
2SPL	104	LEU	6.518599	LEU	83.9530
$5\mathrm{CN5}$	104	LEU	6.517400	LEU	86.5002
1P3T	119	LEU	6.709401	LEU	90.3174
1SY2	123	LEU	5.902915	LEU	147.6300
3MVF	123	LEU	5.891492	LEU	147.9850
3TGC	123	LEU	5.908675	LEU	148.3100
1SY2	133	LEU	6.241713	LEU	171.7810
3MVF	133	LEU	6.341681	LEU	176.8730
$3 \mathrm{TGC}$	133	LEU	6.315080	LEU	175.4300
1N45	138	LEU	6.717099	LEU	68.2659
1VGI	138	LEU	6.110494	LEU	81.0454
2VEB	142	LEU	6.331426	LEU	87.5695
3QZZ	142	LEU	6.534813	LEU	83.8050
3ZJS	142	LEU	6.289922	LEU	80.1179
1N45	147	LEU	6.115862	LEU	123.9670
2R7A	167	LEU	6.508147	LEU	132.6910

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

	NIIIIDE	s code.t	. stallce	Code.3	
PDB ID	Residue /	Residue	Mean DL	Residue	Angle
501L	171	LEU	5.743071	LEU	140.5170
2IIZ	255	LEU	6.075868	LEU	168.3090
2R7A	257	LEU	5.559331	LEU	156.1720
2IIZ	286	LEU	5.566800	LEU	170.9810
2IPS	417	LEU	6.792313	LEU	133.2130
2IPS	433	LEU	5.458537	LEU	130.0630
7C74	433	LEU	5.275537	LEU	124.6650
7DMR	433	LEU	5.225161	LEU	132.7140
2Q6N	437	LEU	5.864970	LEU	72.0648
3VP5	145	LYS	5.832567	LYS	85.9178
5O1M	167	LYS	5.125712	LYS	134.4970
1B2V	140	MET	6.218846	MET	173.7920
1DK0	140	MET	6.185917	MET	173.4760
1DKH	140	MET	6.519598	MET	172.2070
$2\mathrm{CN4}$	140	MET	5.816277	MET	172.2930
4JET	147	MET	5.810508	MET	164.8890
4XZD	147	MET	6.297861	MET	157.8890
4Y1Q	147	MET	6.115760	MET	164.0570
4UZV	151	MET	5.908059	MET	159.1620
4CDP	241	MET	6.340896	MET	157.1200
2J0P	244	MET	6.821994	MET	155.7900
4MF9	257	MET	6.826627	MET	151.6460
5VEU	444	MET	6.285199	MET	65.6856
4I3Q	445	MET	5.975507	MET	65.1655
4NL5	23	PHE	5.580423	PHE	91.4353
2SPL	29	PHE	6.129536	PHE	109.5760
1B5M	35	PHE	5.848448	PHE	126.8820
1ICC	35	PHE	6.276818	PHE	121.2740
1U9U	35	PHE	6.094672	PHE	120.9680
2SPL	43	PHE	5.815167	PHE	96.0910
$5\mathrm{CN5}$	43	PHE	5.981197	PHE	99.8337
4B8N	44	PHE	6.120000	PHE	119.7920
4JET	50	PHE	6.875792	PHE	101.1990
4Y1Q	50	PHE	6.555816	PHE	113.8000
4UZV	53	PHE	6.941930	$\mathbf{PHE}$	134.2300

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

0	Anthor	ş Ç	de.7 vistance	Ç	Jole. ⁵
PDB IL	Residue	Residue/	Mean	Residue	Angle
2CJ0	57	PHE	6.484645	PHE	126.1650
2CPO	57	PHE	6.473913	PHE	125.6230
2J18	57	PHE	6.534471	PHE	126.3090
1B5M	58	PHE	6.096500	PHE	85.0021
1ICC	58	PHE	6.182239	PHE	70.5320
4B8N	67	PHE	6.248829	PHE	78.7253
4UZV	67	PHE	5.984317	PHE	105.7360
1SY2	68	PHE	6.098374	PHE	105.5040
3MVF	68	PHE	6.146303	PHE	102.8610
3TGC	68	PHE	6.152796	PHE	103.4820
2VEB	74	PHE	6.405384	PHE	96.7886
3QZZ	74	PHE	6.218919	PHE	94.8642
3ZJS	74	PHE	6.270262	PHE	95.7239
3VP5	76	PHE	6.844578	PHE	108.6770
4JET	77	PHE	6.310922	PHE	57.4300
4XZD	77	PHE	6.275751	PHE	57.5972
4Y1Q	77	PHE	6.412846	PHE	49.1641
2VEB	93	PHE	5.810118	PHE	112.4610
3QZZ	93	PHE	6.033470	PHE	111.4380
3ZJS	93	PHE	5.922481	PHE	109.4020
2CJ0	103	PHE	6.182880	PHE	112.2600
2CPO	103	PHE	6.396792	PHE	112.7860
2J18	103	PHE	6.235843	PHE	111.5310
3VP5	112	PHE	6.509162	PHE	98.9329
4UZV	119	PHE	5.820671	PHE	139.8230
1SI $8$	132	PHE	6.553242	PHE	138.1490
1SI8	140	PHE	5.575451	PHE	139.2170
2VEB	145	PHE	6.211153	PHE	170.3740
3QZZ	145	PHE	6.192963	PHE	171.6250
3ZJS	145	PHE	6.059949	PHE	169.5920
1P3T	181	PHE	5.974488	PHE	104.9100
2CJ0	186	PHE	5.833496	PHE	170.8360
2CPO	186	PHE	5.891089	PHE	173.0070
2J18	186	PHE	5.882819	PHE	174.2510
2J0P	199	PHE	6.468406	PHE	116.5200

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

Ð	Anthe	Ş Ş	ole. ² Distance	¢	ode.7
PDB II	Residue	Residue /	Mean	Residue	Angle
1IPH	206	PHE	6.665963	PHE	134.5530
1N45	207	PHE	5.975984	PHE	104.6170
1VGI	207	PHE	6.238995	PHE	106.2160
1IPH	214	PHE	5.767678	PHE	138.4550
2FC2	231	PHE	6.129726	PHE	115.0550
4CDP	243	PHE	5.994465	PHE	125.6670
2J0P	246	PHE	6.155004	PHE	127.9200
2IIZ	257	PHE	5.749045	PHE	119.3170
4MF9	259	PHE	5.680334	PHE	124.8600
7C74	347	PHE	6.478230	PHE	83.5884
7DMR	347	PHE	6.671472	PHE	87.2067
2BHJ	363	PHE	5.980185	PHE	116.4950
2Q6N	429	PHE	6.192258	PHE	80.7723
5VEU	434	PHE	6.084164	PHE	82.5712
4I3Q	435	PHE	6.161681	PHE	83.4925
1ZVI	584	PHE	6.009975	PHE	116.6380
2CJ0	28	PRO	6.127671	PRO	76.4322
2CPO	28	PRO	6.018197	PRO	69.8826
2J18	28	PRO	6.103023	PRO	75.1381
2CJ0	30	PRO	5.960531	PRO	65.8824
2CPO	30	PRO	6.017188	PRO	65.4937
2J18	30	PRO	5.936382	PRO	66.0535
1B5M	40	PRO	6.032548	PRO	84.9302
1ICC	40	PRO	6.016737	PRO	84.5709
1U9U	40	PRO	6.149502	PRO	87.3619
4B8N	49	PRO	6.182011	PRO	79.7519
1SI8	315	PRO	6.539721	PRO	121.9570
1IPH	393	PRO	6.703993	PRO	126.7810
2Q6N	428	PRO	6.945175	PRO	74.9040
5VEU	433	PRO	6.574196	PRO	65.9573
4I3Q	434	PRO	6.893037	PRO	69.3456
1B2V	42	SER	6.443386	SER	82.8367
1DK0	42	SER	6.540219	SER	80.4760
1DKH	42	SER	6.070312	SER	32.8371
2FC2	59	SER	6.581787	SER	146.0560

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

	ALIADE	s obe	.t.	ode.7	
Ð	e Do	e/	Diste	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
PDB	Residu	Residu	Mean	Residu	Angle
2E2Y	92	SER	6.454585	SER	115.2050
2SPL	92	SER	6.650791	SER	113.0460
$5\mathrm{CN5}$	92	SER	6.529632	SER	111.5180
1P3T	117	SER	5.531584	SER	57.1608
1N45	142	SER	6.525024	SER	110.0660
1VGI	142	SER	5.700272	SER	125.4790
4MYP	205	SER	6.655356	SER	154.8290
6A2J	261	SER	6.949581	SER	84.4336
$1 \mathrm{QHU}$	266	SER	6.680148	SER	59.3970
1QJS	267	SER	6.730283	SER	71.5751
1IPH	414	SER	6.728176	SER	141.7910
1DK0	33	THR	6.991008	THR	13.7171
2R7A	52	THR	5.945515	THR	116.2990
2E2Y	67	THR	6.891096	THR	106.0790
3VP5	68	THR	6.164947	THR	105.7800
4XZD	82	THR	6.830323	THR	18.2203
1B2V	84	THR	6.798527	THR	18.8827
1DK0	84	THR	6.799510	THR	19.3165
1DKH	84	THR	6.267175	THR	31.3703
$2\mathrm{CN4}$	84	THR	6.804573	THR	19.9645
1SY2	121	THR	6.333312	THR	142.1010
3MVF	121	THR	6.595150	THR	151.0630
3TGC	121	THR	6.343084	THR	149.1780
3VP5	130	THR	5.980868	THR	115.4180
1N45	135	THR	6.713859	THR	60.4070
1VGI	135	THR	6.883314	THR	58.3823
5O1M	168	THR	6.373467	THR	85.9567
6A2J	178	THR	6.772182	THR	86.8748
501L	194	THR	6.305648	THR	104.6020
501M	194	THR	6.409916	THR	101.5220
4MF9	208	THR	6.202558	THR	107.1870
501L	230	THR	6.574103	THR	168.0670
501M	230	THR	6.603918	THR	174.9180
2Q6N	302	THR	5.748396	THR	151.7240
4I3Q	309	THR	6.214341	THR	172.7070

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

	Annipe	st Code.7	. stalle	Code:3	
PDB ID	Residue	Residue	Mean Dr	Residue	Angle
5VEU	309	THR	5.895842	THR	174.8590
2E2Y	43	TRP	5.845537	TRP	95.5213
2FC2	56	TRP	5.737975	TRP	91.6643
3QZZ	60	TRP	6.491833	TRP	126.4880
3ZJS	60	TRP	6.366999	TRP	127.6490
4NL5	66	TRP	6.235302	TRP	112.7010
2R7A	68	TRP	6.192116	TRP	91.3335
$1\mathrm{QHU}$	171	TRP	6.147194	TRP	135.3190
$1 \mathrm{QJS}$	171	TRP	6.211700	TRP	138.2760
2VEB	185	TRP	5.717992	TRP	165.6030
3QZZ	185	TRP	6.111800	TRP	156.0610
3ZJS	185	TRP	5.960798	TRP	163.3900
2BHJ	188	TRP	6.049049	TRP	95.4808
2CJ0	213	TRP	6.764355	TRP	116.4780
2J18	213	TRP	6.782850	TRP	117.0960
2FC2	234	TRP	6.837576	TRP	40.3488
$1 \mathrm{QHU}$	267	TRP	5.987630	TRP	70.5501
$1 \mathrm{QJS}$	268	TRP	6.230710	TRP	64.5387
2BHJ	366	TRP	6.764735	TRP	39.6654
1ZVI	409	TRP	5.660275	TRP	90.9270
1ZVI	587	TRP	6.843603	TRP	40.2585
1SY2	40	TYR	5.887937	TYR	145.2220
3MVF	40	TYR	6.759408	TYR	155.4560
$3 \mathrm{TGC}$	40	TYR	5.967215	TYR	142.7160
206P	52	TYR	6.682161	TYR	136.9010
$2\mathrm{CN4}$	55	TYR	6.806239	TYR	136.9090
4JET	55	TYR	6.877273	TYR	128.1770
4XZD	55	TYR	6.821652	TYR	129.5380
4Y1Q	55	TYR	6.699820	TYR	130.2460
1SY2	58	TYR	6.964531	TYR	29.9485
1U9U	58	TYR	6.232812	TYR	75.1903
3ZJS	61	TYR	6.548411	TYR	78.2808
2R7A	67	TYR	4.159993	TYR	116.4820
1B2V	75	$\mathrm{TYR}$	4.251885	TYR	132.4540
1DK0	75	$\mathrm{TYR}$	4.346840	TYR	131.4420

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

0	Anthor	ş. Ço	le.7 vistalice	Çoj	e ^{.1}
PDB IL	Residue/	Residue/	Mean	Residue	Angle
1DKH	75	TYR	4.792830	TYR	125.4210
2CN4	75	TYR	4.345054	TYR	126.9230
4JET	75	TYR	4.420106	TYR	129.0130
4XZD	75	TYR	4.329954	TYR	127.5350
3VP5	91	TYR	6.574739	TYR	135.6840
2O6P	132	TYR	4.055037	TYR	132.9670
206P	136	TYR	5.148558	TYR	145.4090
3SIK	136	TYR	4.260470	TYR	131.7390
1B2V	137	TYR	6.232518	TYR	107.0750
1DK0	137	TYR	6.186950	TYR	107.9930
1DKH	137	TYR	6.409147	TYR	103.9420
2CN4	137	TYR	6.142879	TYR	102.8860
3SIK	140	TYR	5.120136	TYR	140.8870
$1 \mathrm{QHU}$	204	TYR	6.239544	TYR	82.8848
$1 \mathrm{QJS}$	204	TYR	6.225721	TYR	82.0806
4MYP	280	TYR	4.465249	TYR	129.7640
4MYP	289	TYR	5.900895	TYR	133.7170
1SI $8$	337	TYR	3.976560	TYR	101.8400
1IPH	415	TYR	4.218561	TYR	114.2710
1P3T	26	VAL	6.716946	VAL	118.5490
1SY2	36	VAL	6.479806	VAL	130.3660
3TGC	36	VAL	6.135653	VAL	128.7560
1B2V	37	VAL	5.425221	VAL	150.5390
1DK0	37	VAL	5.400636	VAL	154.2260
1DKH	37	VAL	5.642973	VAL	149.8520
1B5M	45	VAL	5.846522	VAL	132.2220
1ICC	45	VAL	5.992035	VAL	128.6010
1U9U	45	VAL	6.500194	VAL	133.1230
1SI $8$	53	VAL	6.238869	VAL	132.7600
4NL5	53	VAL	5.909472	VAL	175.0330
1B5M	61	VAL	6.074911	VAL	142.4900
1ICC	61	VAL	5.726742	VAL	157.5600
1U9U	61	VAL	6.163696	VAL	152.2510
2SPL	68	VAL	5.598014	VAL	111.2660
5CN $5$	68	VAL	5.556498	VAL	104.0070

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

	( ) III)	Ş-	when?		, de. ⁵
PDB ID	Residue Nu	Residue	So Mean Disto	Residue	Co Angle
4B8N	75	VAL	6.033658	VAL	149.8530
2VEB	89	VAL	5.917494	VAL	126.3020
3QZZ	89	VAL	5.927268	VAL	128.6650
3ZJS	89	VAL	5.790982	VAL	125.8290
206P	119	VAL	6.176593	VAL	171.6540
1SI8	125	VAL	6.016899	VAL	127.3950
1IPH	127	VAL	6.256166	VAL	129.5510
3VP5	131	VAL	5.568423	VAL	118.6510
3VP5	148	VAL	6.888565	VAL	110.6600
501L	152	VAL	6.293389	VAL	97.5310
501M	152	VAL	6.250877	VAL	96.3132
6A2J	175	VAL	6.202413	VAL	96.8786
6A2J	182	VAL	6.679490	VAL	146.8970
4CDP	192	VAL	5.600764	VAL	109.6320
2J0P	195	VAL	6.307524	VAL	111.4460
5O1L	197	VAL	6.648164	VAL	117.0650
501M	197	VAL	6.631076	VAL	113.6940
1IPH	199	VAL	6.294207	VAL	124.0950
2IIZ	228	VAL	5.315815	VAL	165.2710
2BHJ	346	VAL	6.643571	VAL	125.1020
2IPS	354	VAL	6.655642	VAL	133.4880
5VEU	369	VAL	6.886497	VAL	120.7080
1ZVI	416	VAL	5.960795	VAL	55.0798

 Table B.29:
 HEM:
 All CA-CB-Fe Angles (continued)

 Table B.30:
 HEC:
 All CA-CB-Fe Angles

PDB ID	Residue Munde	s Col	e.7. Mean Distance	Resilue Code.y	Ange
5KPF	81	ALA	6.517051	ALA	45.2733
$5 \mathrm{LFT}$	81	ALA	6.400723	ALA	49.6961
$5\mathrm{T8W}$	81	ALA	6.484127	ALA	46.8814
3EAH	147	ALA	6.240842	ALA	152.0380

	NIIIIDE	s code.7	. stalle	Code:3	
PDB ID	Residue	Residue	Mean Di	Residue	Angle
2BC5	106	ARG	5.961420	ARG	119.2950
6WZA 1BBH	106 120	ARG	6.631682 5 700808	ARG	132.5260
3EAH	129	ARG	5 803314	ARC	140.1750 75 1674
3EAH	149	ARG	6514542	ARG	70 9288
2BC5	99	ASN	6.936196	ASN	26.5703
3X15	12	CYS	6.451594	CYS	87.5164
5KPF	14	CYS	6.631432	CYS	91.6899
$5 \mathrm{LFT}$	14	CYS	6.598389	CYS	89.7859
$5\mathrm{T8W}$	14	CYS	6.647516	CYS	89.3990
6XNK	14	CYS	6.275930	CYS	94.7801
2BH5	15	CYS	6.513509	CYS	93.4388
3X15	15	CYS	6.178945	CYS	124.5130
5KPF	17	CYS	6.098545	CYS	128.9880
$5 \mathrm{LFT}$	17	CYS	6.056595	CYS	131.2330
$5\mathrm{T8W}$	17	CYS	6.188739	CYS	130.6870
6XNK	17	CYS	5.903640	CYS	129.1390
1W2L	18	CYS	6.554906	CYS	83.0319
2BH5	18	CYS	6.369197	CYS	129.9250
1W2L	21	CYS	6.223591	CYS	129.4480
2BC5	98	CYS	5.957326	CYS	83.1994
6WZA	98	CYS	5.774303	CYS	89.2313
2BC5	101	CYS	6.394766	CYS	122.7380
6WZA	101	CYS	6.455707	CYS	120.0850
1BBH	121	CYS	5.737156	CYS	88.6062
1BBH	124	CYS	6.272059	CYS	118.4660
3EAH	150	CYS	4.247423	CYS	109.9070
6VDQ	317	CYS	6.231170	CYS	153.4870
1S56	58	GLN	6.005777	$\operatorname{GLN}$	114.9080
1BBH	17	GLU	6.940695	GLU	46.8470
3X15	16	HIS	4.360557	HIS	123.2520
5KPF	18	HIS	4.310334	HIS	121.8690
5LFT	18	HIS	4.342999	HIS	122.5120
5T8W	18	HIS	4.334295	HIS	122.3910
6XNK	18	HIS	4.599701	HIS	122.1970

 Table B.30:
 HEC: All CA-CB-Fe Angles (continued)

2	Anthe	s Code. ¹	-istalice	Code.Y	
PDB ID	Residue	Residue	Mean Dr	Residue	Angle
2BH5	19	HIS	4.283790	HIS	122.4230
1W2L	22	HIS	4.350769	HIS	122.1140
1S56	81	HIS	4.475028	HIS	112.6780
2BC5	102	HIS	4.186908	HIS	96.2948
6WZA	102	HIS	4.440577	HIS	93.6577
1BBH	125	HIS	4.218890	HIS	95.2502
6VDQ	274	HIS	4.500421	HIS	121.1700
6VDQ	313	HIS	4.120545	HIS	123.2950
3X15	30	ILE	6.412845	ILE	143.9220
1W2L	61	ILE	6.839545	ILE	64.6202
6XNK	75	ILE	6.412701	ILE	119.2950
1S56	86	ILE	5.878780	ILE	163.7880
6VDQ	278	ILE	5.358791	ILE	112.0200
2BC5	3	LEU	6.742954	LEU	93.4646
6WZA	3	LEU	6.697674	LEU	97.4908
2BC5	10	LEU	6.154091	LEU	145.5220
6WZA	10	LEU	6.067786	LEU	145.9270
5KPF	32	LEU	6.145036	LEU	120.1710
$5 \mathrm{LFT}$	32	LEU	6.106815	LEU	122.2640
$5\mathrm{T8W}$	32	LEU	5.994375	LEU	121.4370
6XNK	32	LEU	6.085909	LEU	119.5620
2BH5	39	LEU	5.728784	LEU	123.5750
1S56	54	LEU	5.947501	LEU	117.0640
5KPF	68	LEU	6.268124	LEU	84.1501
$5 \mathrm{LFT}$	68	LEU	6.315525	LEU	85.1852
$5\mathrm{T8W}$	68	LEU	6.123569	LEU	85.5580
6VDQ	238	LEU	6.409586	LEU	130.4750
6VDQ	277	LEU	6.506868	LEU	130.8480
6XNK	79	LYS	3.938274	LYS	132.9060
2BH5	100	LYS	4.313747	LYS	174.4600
2BC5	7	MET	4.661903	MET	112.0730
6WZA	7	MET	4.611608	MET	112.1700
1BBH	19	MET	6.049470	MET	132.1620
1W2L	76	MET	4.403618	MET	95.5351
1S56	77	MET	6.187616	MET	79.9304

 Table B.30:
 HEC: All CA-CB-Fe Angles (continued)

	Annibe	s cole.t	Ashee	cole.J	
D.	me	Alle/	Dis	Alle	<b>2</b> 91
PDp,	Resil	Resil	Mealt	Resil	Allole
5KPF	80	MET	4.692154	MET	126.7040
$5 \mathrm{LFT}$	80	MET	4.757864	MET	124.0680
$5\mathrm{T8W}$	80	MET	4.693021	MET	126.3770
1W2L	34	PHE	5.935685	PHE	94.2433
3X15	44	PHE	6.024333	PHE	118.7300
1S56	46	PHE	5.938368	PHE	100.7840
2BC5	65	PHE	6.201901	PHE	87.4034
6WZA	65	PHE	6.184290	PHE	90.1118
5KPF	82	PHE	6.311357	PHE	145.9170
5LFT	82	PHE	6.466458	PHE	143.5030
$5\mathrm{T8W}$	82	PHE	6.527249	PHE	141.0090
2BH5	102	PHE	6.736126	PHE	125.9060
3EAH	319	PHE	6.137327	PHE	117.8130
6VDQ	320	PHE	6.121894	PHE	123.1650
3X15	25	PRO	6.252857	PRO	84.9462
5KPF	30	PRO	6.184028	PRO	77.6163
$5 \mathrm{LFT}$	30	PRO	6.179273	PRO	78.6390
$5\mathrm{T8W}$	30	PRO	6.138272	PRO	79.9221
6XNK	30	PRO	5.900245	PRO	78.3181
1W2L	32	PRO	6.457693	PRO	80.5165
2BH5	37	PRO	6.202537	PRO	77.9642
$5 \mathrm{KPF}$	71	PRO	6.976183	PRO	151.2390
$5 \mathrm{LFT}$	71	PRO	6.983064	PRO	154.1260
$5\mathrm{T8W}$	71	PRO	6.909375	PRO	148.7700
1W2L	77	PRO	6.071845	PRO	84.7339
2BH5	83	PRO	6.953188	PRO	141.6410
1W2L	60	SER	6.470812	SER	107.3410
6XNK	28	$\mathrm{THR}$	6.983672	THR	95.9136
6VDQ	309	THR	6.443589	THR	99.5431
3EAH	144	$\mathrm{TRP}$	5.647844	TRP	91.6868
6VDQ	271	TRP	5.880644	TRP	138.8540
3EAH	322	TRP	6.529256	TRP	42.5273
1BBH	16	TYR	4.795494	TYR	126.0380
1856	33	TYR	6.252015	TYR	98.2768
1BBH	58	TYR	6.554347	TYR	118.4030

 Table B.30:
 HEC: All CA-CB-Fe Angles (continued)
PDB ID	Residue Munibe	Residue Code	Nean Distance	Residue Code.7	Angle
5KPF	67	TYR	5.922923	TYR	117.3570
5LFT	67	TYR	5.919346	TYR	117.9010
$5\mathrm{T8W}$	67	TYR	5.858639	TYR	116.3210
6XNK	67	TYR	5.613420	TYR	126.9700
2BH5	79	TYR	5.535216	TYR	107.5970
1W2L	80	TYR	6.249808	TYR	159.9880
6VDQ	310	TYR	6.768220	TYR	57.7313
1W2L	75	VAL	6.753821	VAL	68.5700
1S56	80	VAL	6.205932	VAL	122.1110
2BH5	80	VAL	6.887770	VAL	86.0062
6XNK	83	VAL	6.004096	VAL	114.6820
1S56	94	VAL	6.626107	VAL	156.6730
1S56	126	VAL	6.029592	VAL	116.6120
3EAH	151	VAL	6.103944	VAL	58.7518

 Table B.30:
 HEC: All CA-CB-Fe Angles (continued)

 Table B.31:
 SRM: All CA-CB-Fe Angles

PDB ID	Residue Numbe	s Code	.* Mean Distance	Residue Code.y	Angle
1ZJ8	468	ALA	6.774896	ALA	54.3434
3B0G	486	ALA	6.469408	ALA	52.3271
3VKP	486	ALA	6.471195	ALA	52.9419
3VLX	486	ALA	6.481752	ALA	51.8739
3VLY	486	ALA	6.503895	ALA	51.7331
3VLZ	486	ALA	6.507235	ALA	53.7924
$5 \mathrm{H8V}$	545	ALA	6.528336	ALA	49.2614
2AOP	83	ARG	5.905472	ARG	162.1930
1ZJ8	97	ARG	5.632921	ARG	148.8370
2AKJ	109	ARG	5.624044	ARG	148.4620
3B0G	109	ARG	5.714505	ARG	157.7590
3VKP	109	ARG	5.727950	ARG	159.0060
3VLX	109	ARG	5.657293	ARG	157.8390

## B. Tables

	Annibe	s cole.t	Ashee	Code.3	
Ð	ane >	e/	Dip	2.7°/	
5DB	Residu	Reside	Mean	Reside	Angle
3VLY	109	ARG	5.670401	ARG	156.2520
3VLZ	109	ARG	5.666461	ARG	159.7330
5 H8 V	124	ARG	5.731236	ARG	158.1950
2AOP	153	ARG	6.898322	ARG	144.7120
1ZJ8	166	ARG	6.411696	ARG	157.1260
2AKJ	179	ARG	6.270969	ARG	150.8160
3B0G	179	ARG	6.332302	ARG	150.2730
3VKP	179	ARG	6.261289	ARG	149.5410
3VLX	179	ARG	6.332845	ARG	148.5140
3VLY	179	ARG	6.349458	ARG	149.9780
3VLZ	179	ARG	6.432708	ARG	147.1060
5 H8 V	193	ARG	6.748373	ARG	152.0550
2AOP	116	ASN	6.627004	ASN	95.1407
1ZJ8	465	ASN	6.589731	ASN	126.9150
2AOP	481	ASN	6.568014	ASN	121.7600
3B0G	483	ASN	6.105308	ASN	124.8060
3VKP	483	ASN	6.093849	ASN	125.9350
3VLX	483	ASN	6.149563	ASN	124.5220
3VLY	483	ASN	6.199685	ASN	124.0840
3VLZ	483	ASN	6.172324	ASN	122.9020
2AKJ	484	ASN	6.180565	ASN	125.4620
5 H8 V	542	ASN	6.517505	ASN	120.9920
1ZJ8	129	ASP	6.873987	ASP	96.5485
1ZJ8	467	CYS	4.642760	CYS	106.8380
2AOP	483	CYS	4.593058	CYS	115.6650
3B0G	485	CYS	4.334547	CYS	114.2180
3VKP	485	CYS	4.338921	CYS	113.1560
3VLX	485	CYS	4.333556	CYS	112.7580
3VLY	485	CYS	4.349260	CYS	114.5360
3VLZ	485	CYS	4.361247	CYS	115.6310
2AKJ	486	CYS	4.400598	CYS	106.3630
5 H8 V	494	CYS	6.918908	CYS	129.0520
5 H8 V	544	CYS	4.294361	CYS	112.4810
2AOP	121	GLN	6.832109	GLN	146.9480
1ZJ8	134	GLN	6.870508	GLN	147.3840

 Table B.31:
 SRM: All CA-CB-Fe Angles (continued)

## B. Tables

	Munipe	s Cole.*	Vistance	Code.7	
SUB IT	Residue	Residue	Mean	Residue	Angle
5H8V	161	GLN	6.725078	GLN	$\frac{141.5670}{172.2200}$
1ZJ8	207	LYS	5.279599	LYS	
1ZJ8	209	LYS	5.254105	LYS	132.2160
2AOP	215	LYS	5.521547	LYS	157.3800
2AOP	217	LYS	5.485034	LYS	135.7480
2AKJ	224	LYS	5.292960	LYS	179.3020
3B0G	224	LYS	5.579947	LYS	175.7930
3VKP 3VLX 3VLY 3VLZ 3VLY	224 224 224 224 224 226	LYS LYS LYS LYS LYS	5.500133 5.605021 5.637976 5.601385 5.485627	LYS LYS LYS LYS LYS	$\begin{array}{c} 175.8260\\ 177.4260\\ 177.5250\\ 175.4720\\ 132.6280\end{array}$
3VLZ	226	LYS	5.641233	LYS	$\begin{array}{c} 129.8350 \\ 174.1460 \\ 140.5820 \\ 46.1914 \\ 45.1203 \end{array}$
5H8V	276	LYS	5.805329	LYS	
5H8V	278	LYS	5.495851	LYS	
1ZJ8	466	SER	6.539429	SER	
2AKJ	485	SER	6.504302	SER	
2AKJ	142	THR	$\begin{array}{c} 6.814343\\ 6.442796\\ 6.428882\\ 6.455248\\ 6.452740\end{array}$	THR	112.5850
3B0G	142	THR		THR	114.5110
3VKP	142	THR		THR	114.3200
3VLX	142	THR		THR	113.9840
3VLY	142	THR		THR	113.0910
3VLZ 5H8V 3B0G 3VKP 3VLX	142 156 484 484 484	THR THR THR THR THR	$\begin{array}{c} 6.394057\\ 6.490994\\ 6.402854\\ 6.412766\\ 6.401875\end{array}$	THR THR THR THR THR	$\begin{array}{c} 112.9370 \\ 114.0040 \\ 31.8530 \\ 32.2678 \\ 31.6972 \end{array}$
3VLY	484	THR	$\begin{array}{c} 6.414362 \\ 6.437540 \\ 6.963349 \\ 6.992106 \end{array}$	THR	32.6034
3VLZ	484	THR		THR	35.4494
1ZJ8	69	TYR		TYR	168.2380
5H8V	106	TYR		TYR	153.7720

 Table B.31:
 SRM: All CA-CB-Fe Angles (continued)

## B. Tables

Ð	Annipe	ș.	ole.4 Sistance	¢	odet
PDB II	Residue /	Residue	Mean	Residue	Augle
2ZVU	28	ALA	6.962159	ALA	120.0970
3MOO	136	ASP	6.778611	ASP	23.6316
2ZVU	140	ASP	6.674210	ASP	26.6732
3MOO	24	GLU	6.275511	GLU	110.6430
2ZVU	29	GLU	6.221641	GLU	117.2590
3MOO	20	HIS	4.614778	HIS	111.0890
2ZVU	25	HIS	4.603252	HIS	110.7510
3MOO	134	LEU	6.100073	LEU	77.1733
2ZVU	138	LEU	6.249768	LEU	76.7687
3MOO	201	PHE	5.958999	PHE	104.2170
2ZVU	207	PHE	6.037412	PHE	105.4400
3MOO	138	SER	5.886820	SER	125.3120
2ZVU	142	SER	6.048311	SER	126.2110
2ZVU	135	THR	6.765195	THR	58.6713
3MOO	131	VAL	6.796515	VAL	60.1702
1TWN	140	ASP	6.273979	ASP	27.4847
1TWR	140	ASP	6.553790	ASP	27.4184
1TWN	29	GLU	6.123574	GLU	100.1730
1TWR	29	GLU	6.517157	GLU	103.1100
1TWN	25	HIS	4.673370	HIS	113.5160
1TWR	25	HIS	4.786588	HIS	108.8640
1TWN	138	LEU	6.399559	LEU	75.1317
1TWR	138	LEU	6.579770	LEU	75.0669
1TWN	207	PHE	6.263716	PHE	105.9700
1TWR	207	PHE	6.447849	PHE	107.0750
1TWN	142	SER	6.035867	SER	114.7150
1TWR	142	SER	6.195017	SER	129.2760
1TWN	135	THR	6.865192	THR	60.8151

 Table B.32:
 VERDOHEME: All CA-CB-Fe Angles

## Works Cited

- Thomas L. Poulos. "Heme enzyme structure and function". In: *Chemical Reviews* 114.7 (2014), pp. 3919–3962. DOI: 10.1021/cr400415k.
- Jesse G. Kleingardner and Kara L. Bren. "Biological Significance and Applications of Heme c Proteins and Peptides". In: Accounts of Chemical Research 48.7 (2015), pp. 1845–1852. DOI: 10.1021/acs.accounts.5b00106.
- [3] Jesus A. Araujo, Min Zhang, and Fen Yin. "Heme oxygenase-1, oxidation, inflammation, and atherosclerosis". In: *Frontiers in Pharmacology* 3 JUL.July (2012), pp. 1–17. DOI: 10.3389/fphar.2012.00119.
- [4] Lei Du et al. "Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system". In: Proceedings of the National Academy of Sciences of the United States of America 114.26 (2017), E5129–E5137. DOI: 10.1073/pnas.1702317114.
- Jim Lalonde. "Highly engineered biocatalysts for efficient small molecule pharmaceutical synthesis". In: *Current Opinion in Biotechnology* 42 (2016), pp. 152–158. DOI: 10.1016/j.copbio.2016.04.023. URL: http://dx.doi.org/10.1016/j.copbio.2016.04.023.
- [6] Hazel M. Girvan and Andrew W. Munro. "Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology". In: Current Opinion in Chemical Biology 31 (2016), pp. 136–145. DOI: 10.1016/j.cbpa.2016.02.018. URL: http://dx.doi.org/10.1016/j.cbpa.2016.02.018.
- [7] Zhong Li et al. "Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications". In: *Journal of Biological Chemistry* 295.3 (2020), pp. 833–849. DOI: 10.1016/s0021-9258(17)49939-x.
- [8] Tiffany P. Barrows and Thomas L. Poulos. "Role of electrostatics and salt bridges in stabilizing the compound I radical in ascorbate peroxidase". In: *Biochemistry* 44.43 (2005), pp. 14062–14068. DOI: 10.1021/bi0507128.
- [9] Takashi Hayashi et al. "A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site". In: *Journal of the American Chemical Society* 131.4 (2009), pp. 1398–1400.
- [10] Sarah E.J. Bowman and Kara L. Bren. "The chemistry and biochemistry of heme c: Functional bases for covalent attachment". In: *Natural Product Reports* 25.6 (2008), pp. 1118–1130. DOI: 10.1039/b717196j.
- Baishnab C. Tripathy, Irena Sherameti, and Ralf Oelmüller. "Siroheme: An essential component for life on earth". In: *Plant Signaling and Behavior* 5.1 (2010), pp. 14–20. DOI: 10.4161/psb.5.1.10173.

- [12] Adrian M.V. Brânzanic, Ulf Ryde, and Radu Silaghi-Dumitrescu. "Why does sulfite reductase employ siroheme?" In: *Chemical Communications* 55.93 (2019), pp. 14047–14049. DOI: 10.1039/c9cc05271b.
- [13] Wenzhen Lai et al. "Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: A combined X-ray crystallography and QM/MM study". In: Journal of the American Chemical Society 132.37 (2010), pp. 12960–12970. DOI: 10.1021/ja104674q.
- [14] Hideaki Sato et al. "Electrochemical reduction of ferrous α-verdoheme in complex with heme oxygenase-1". In: Journal of Inorganic Biochemistry 101.10 (2007), pp. 1394–1399. DOI: 10.1016/j.jinorgbio.2007.05.016.
- [15] Latesh Lad, Paul R. Ortiz De Montellano, and Thomas L. Poulos. "Crystal structures of ferrous and ferrous-NO forms of verdoheme in a complex with human heme oxygenase-1: Catalytic implications for heme cleavage". In: Journal of Inorganic Biochemistry 98.11 (2004), pp. 1686–1695. DOI: 10.1016/j.jinorgbio.2004.07.004.
- [16] Manabu Ishida et al. "Design and synthesis of de Novo cytochromes c". In: Biochemistry 43.30 (2004), pp. 9823–9833. DOI: 10.1021/bi049546e.
- Ting Li, Herbert L Bonkovsky, and Jun Tao Guo. "Structural analysis of heme proteins: Implications for design and prediction". In: *BMC Structural Biology* 11 (2011). DOI: 10.1186/1472-6807-11-13.
- [18] Patrick Finnerty. *heme-binding*. Sept. 2021. URL: https://github.com/patimus-prime/heme-binding.git.
- [19] Roman A. Laskowski. "SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions". In: *Journal of Molecular Graphics* 13.5 (1995), pp. 323–330. DOI: 10.1016/0263-7855(95)00073-9.
- [20] Michel F. Sanner, Arthur J. Olson, and Jean Claude Spehner. "Reduced surface: An efficient way to compute molecular surfaces". In: *Biopolymers* 38.3 (1996), pp. 305–320. DOI: 10.1002/(sici)1097-0282(199603)38:3<305::aid-bip4>3.0.co;2-y.